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Preface 
 

Visualization and visual analytics show great potential as methods to analyze, filter, and 

illustrate many of the diverse data used in clinical practice.  Today, (a) physicians and 

clinical practitioners are faced with the challenging task of analyzing large amount of 

unstructured, multi-modal, and longitudinal data to effectively diagnose and monitor the 

progression of a particular disease; (b) patients are confronted with the difficult task of 

understanding the correlations between many clinical values relevant to their health; and 

(c) healthcare organizations are faced with the problem of improving the overall 

operational efficiency and performance of the institution while maintaining the quality of 

patient care and safety.   

 

Visualization and visual analytics can potentially provide great benefits to each of these 

three core areas of healthcare.  However, to be successful, the resulting visualization must 

be able to meet the physician’s requirements and be useful for both patients and 

physicians. 

 

Despite the continuous use of scientific visualization and visual analytics in medical 

applications, the lack of communication between engineers and physicians has meant that 

only basic visualization and analytics techniques are currently employed in clinical 

practice.  The goal of this workshop is to gather together leading physicians and clinical 

practitioners to share with the visualization community their need for specific 

visualization tools and discuss the areas in healthcare where additional visualization 

techniques are needed. 

 
 
 

Jesus J Caban,  
NICoE / Naval Medical Center 
CC / National Institutes of Health 
 
David Gotz 
IBM Research
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assistant professor in the School of Optometry, University of 
California, Berkeley. He has been with the Division of Research 
since 1969, first as a medical information scientist, and then as an 
assistant to the director prior to becoming a research scientist. Dr. 
Terdiman’s research interests include medical informatics, 
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principal investigator of The Kaiser Permanente National 
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Harvard Medical School / Partners HealthCare System 

 

Dr. Schnipper is an Assistant Professor of Medicine at Harvard 
Medical School, Associate Physician at Brigham and Women’s 
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hospital-based pharmacists, and process redesign using 
continuous quality improvement methods.   
 
Paul Nagy, PhD 
Johns Hopkins University 

 

Dr. Nagy is a Visiting Associate Professor and Director of 
Quality at the Russell H. Morgan department of Radiology at 
Johns Hopkins University.   Dr. Nagy research interests include 
utilizing information technology as a platform to measure quality 
in radiology. 
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VISCARETRAILS: Visualizing Trails in the Electronic Health Record

with Timed Word Trees, a Pancreas Cancer Use Case

Lauro Lins, Marta Heilbrun, Juliana Freire, Member, IEEE, and Claudio Silva, Member, IEEE

Fig. 1. VISCARETRAILS session on a dataset of pancreatic cancer patients. The central top display shows a Timed Word Tree with

staging events (STAGE I, STAGE II, STAGE III, STAGE IV) and rooted in the death event (DEAD). Selecting the stage nodes, corre-

sponding to severity and extent of disease, the bottom left plot presents survival curves indicating the fraction of each of the four sets

of staged subjects that were still alive after t days, and the box-plot represents the distribution of the time distance the death event.

This visualization confirms that this specific dataset follows the known patterns for pancreatic cancer patients and is obtained with

just a few intuitive mouse gestures.

Abstract— As a mandate in the 2009 ARRS act, all US health care systems are moving toward electronic health record (EHR)

systems to capture and store patient data. The EHR is a rich source of health information about individual patients and/or populations.

The ability to analyze and identify meaningful patterns in this data has the potential to produce important knowledge. Yet, there is still

a considerable gap between what answers are captured in this record and what answers can be effectively extracted from it. To reduce

this gap, more intuitive ways of posing questions and obtaining answers are needed. In this paper we present VISCARETRAILS, a

system based on timed word trees visualization that summarizes event paths relative to a given root event and are obtained through a

simple drag-and-drop user interface. These summaries visually convey information about the nature, frequency and average timing of

the event paths, and serve as a natural starting point to obtain further details and compare different paths. We apply VISCARETRAILS

in a dataset of pancreatic cancer patients to illustrate its effectiveness.

Index Terms— Information visualization, Electronic Health Records, Survival, Cancer, Word Trees, Tree Layout.

1 INTRODUCTION

As a component of the ARRS and HITECH acts of 2009, the US gov-

ernment has made a significant investment in order to grow the Elec-

tronic Health Record (EHR). Hospitals and providers who demonstrate

“meaningful use” of the EHR will begin receiving incentive payments

in 2011, with penalties to begin after 2014. The adoption of EHRs is

being pushed with the belief that the information contained in EHRs

will improve medical decision making with an associated improve-

ment in patient outcomes [2].

Information visualization systems have been developed to facilitate

the synthesis and analysis of large amounts of information using tem-

• Lauro Lins is with NYU-Poly, E-mail: lauro@nyu.edu.

• Marta Heilbrun is with Departament of Radiology, Univ. of Utah, E-mail:

marta.heilbrun@hsc.utah.edu.

• Juliana Freire is with NYU-Poly, E-mail:juliana.freire@nyu.edu.

• Claudio Silva is with NYU-Poly, E-mail: csilva@nyu.edu.

poral and sequence analysis [7]. This project demonstrates a visual

analytic tool that grew organically from a question and collaboration

between a physician and computer science engineers. This tool is de-

signed to address specifically challenges to the extraction of meaning-

ful information from EHR data. We developed a time-stamped infor-

mation visualization tool, VISCARETRAILS, to facilitate the analysis

of patient histories stored in the EHR. The use case will use VISCARE-

TRAILS to focus on the diagnosis of pancreatic cancer.

VISCARETRAILS is a system based on timed word tree visualiza-

tions summarizing event paths relative to a given root event. These are

generated in a simple drag-and-drop user interface. In particular, in

this domain of patient histories, we see VISCARETRAILS as an inter-

esting alternative to a previous visualization called LifeFlow [6]. This

process summarizes multiple sequences of timed-events and general-

izes the idea of Word Trees [8]. VISCARETRAILS provides the user a

means to explore electronic health data in order to understand patterns,

problems and opportunities in clinical practice.
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2 A VISUAL SUMMARY FOR EVENT SEQUENCES

The central element of VISCARETRAILS is a visualization that sum-

marizes multiple event sequences. The idea is to summarize S, an

input set of event sequences, based on another input: a root event, r.

Once S and r are defined, a visual summary is generated in two steps.

First, an event tree, T , based on S and r is computed. Second, a visual

representation, V , for the event tree, T , is generated.

2.1 Event Trees

An event tree is a simple way to summarize event sequences. Figure 2

shows an example of such an object. Given event sequences S and a

root event r, the first step is to choose an alignment point for each in-

put sequence. In Figure 2, alignment points are indicated by red circles

and ir define their indices. The event at the alignment point of each se-

quence should be equal to the root event (C in our example). Once the

alignment points are defined, we add a root node to the event tree with

label r, offset 0, and set all sequences from S as members of this node

(e.g., central node of T in Figure 2). Next, a left parse (negative off-

sets) and right parse (positive offsets) on each input sequence starting

from its alignment point is performed. In our example, the left parse of

s1 generates first the node with label B and offset -1 and then the node

with label A and offset -2 (note that s1 is present in these two nodes).

The right parse of s1 generates first the node with label D and offset 1,

and then the node with label E and offset 2, both having sequence s1

as a member. We follow the same idea for the left and right parses of

the other sequences always reusing existing nodes when possible. For

example, when doing the left parse of s3, we reuse the same node with

label B and offset -1 as the one generated when left parsing s1.

Fig. 2. Example of an event tree, T , rooted at event C for the set of event
sequences S. Each node in T has an event label, a subset of sequences,
and an offset (small circle). The central visualization in VISCARETRAILS

are visual representations for event trees.

2.2 LifeFlow

The concept of event trees has been shown useful for the problem of

making sense of patient histories. Wang et al. [6] define a sentinel

event (our root event) as a way to align temporal data and find patterns

once the alignment is established. Later, Wongsuphasawat et al. [9]

proposed LifeFlow, a technique that computes an event tree T and then

generates a visual encoding for it: VLF . Figure 3 shows a LifeFlow

visualization for a dataset of hospital events regarding arrivals, transfer

between blocks (ICU, Emergency, Floor), discharges, and deaths. In

VLF , the nodes of T are graphically encoded by rectangles and their

labels are encoded by colors (a legend is necessary to map colors into

event names). The height of each rectangle’s node is proportional to

the number of sequences in its node and the width is proportional to

a summary measure (e.g., mean) of the time difference between the

node’s event and the previous event for all its sequences. The left side

of a child node’s rectangle intersects completely the right side of the

rectangle of its parent node.

Although we considered using the LifeFlow visual summary as the

central display in VISCARETRAILS, two problems drove us to a dif-

ferent visualization. First, the datasets we plan to analyze with VIS-

CARETRAILS contain thousands of event types (e.g., diagnostic exam

names). It is unfeasible to associate a fixed color to each event type and

let a user learn this association once. To understand event paths with

LifeFlow in our use case, a continuous back-and-forth effort between

the main visualization and the color translation legend is required. The

second problem is that we want to support dozens of simultaneous

event types in a single visualization. In this case, even with the color

translation legend, it is hard to read the main LifeFlow visualization,

because it is hard to perceive different colors when more than just a

few colors (i.e., less than a dozen) are used.

2.3 Timed Word Trees

Inspired by Word Tree displays [8], our basic idea was to replace col-

ored rectangle labels used in LifeFlow visualizations with text labels.

If this could be done while preserving, to a certain degree, the other

characteristics of LifeFlow visualizations, we would obtain a better

central visualization for VISCARETRAILS (e.g., without the two prob-

lems mentioned before).

Why not standard word trees? In fact word trees is an interesting

alternative to visually encode paths and path frequencies for an event

tree. The problem is that one piece of information present in event

trees and encoded in LifeFlow visualizations is not encoded in a stan-

dard word tree: the time distance between two events (two adjacent

nodes in an event tree). To address this issue we propose timed word

trees, a generalization of word trees where each word in the tree has

an associated time stamp and the final display encodes the time dis-

tances between the words based on these time stamps. Figure 1 shows

a timed word tree for pancreatic cancer patients. From this display we

can read that the average time span between the last stage event and

the death event decreases for patients that die when officially regis-

tered in, respectively, STAGE I, STAGE II, STAGE III and STAGE IV.

A more elaborate timed word tree example is shown in Figure 4 (same

event tree as Figure 4).

Equally spaced guide-lines are rendered in order to help convey the

concept of time on a timed word tree. One of the characteristics of a

timed word tree is that, although time order is preserved, equal display

lengths might represent different time lengths. To help minimize this

distortion, we map the guide lines crossing the visualization back into

a linear time line (see the the light green, gray, blue transition rect-

angles on the timed word tree displays). Note, for example, that the

guide-lines that cross the DEAD node in Figure 1 are all mapped to the

same point on the light blue rectangle.

Our current algorithm to render timed word trees involves (1) open-

ing space in the time axis to fit event label dimensions and time dis-

tances, and (2) setting a y coordinate to the words (assuming x coor-

dinate is time) so as to avoid text overlaps and at the same time have

a packed layout. A detailed explanation of (1) and (2) is beyond the

scope of this paper, but it is worth mentioning that the algorithm is

fast: O(n log(n)), where n is the number of words, and we are able

to layout timed word trees with millions of nodes in a fraction of a

second using a standard laptop.

3 VISCARETRAILS SYSTEM

VISCARETRAILS supports the following pipeline: (1) a set of time-

stamped event sequences is loaded into the system; (2) group-events

are defined as needed (STAGE III in Figure 1 is a group-event that

means either event III, IIIA, IIIB or IIIC); (3) a timed word tree is

generated by dragging and dropping events and/or group-events into

the central canvas (in Figure 1, stage events & DEAD were dragged and

dropped into the canvas); (4) one of the dropped events is defined as

the root event (by default the root is the first element that was dropped

in the visualization, but a user can change the root event at any time);

(5) the visual summary generated is inspected to understand paths that

end and start in the root event; and (6) path nodes are selected to obtain

survival curves for the sequences. Figure 1 shows survival curves of

the selected stage nodes (red, green, purple, and orange paths): bottom

left widget. The visual summary conveys information about frequency

of events (larger fonts and thicker transitions means more sequences

going through the path), time distances (based on average times) of

the events relative to their parent event; and a hint on the dispersion

2 14
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Fig. 3. LifeFlow visualization, VLF , summarizing hospital event se-

quences for 91 patients (taken from [9]).

(i.e., standard deviation) of time distances in each event transition (i.e.
the hue of blue darkens as the standard deviation of the time distance
decreases). On the second bottom widget (from left to right), we show
a box-plot for the time distance distribution from the selected events
to the root event.

4 PANCREAS CANCER USE CASE

4.1 Pancreas Cancer
Cancer represents a unique case in which to use EHR data to study
health care complexity. Cancer of the exocrine pancreas is the fourth
leading cause of cancer death in the US. In 2010, it was estimated that
43,140 new cases and 36,800 deaths occurred from pancreatic cancer
in the US, with only 6% overall survival at 5 years [1].

4.2 Patient Cohort
Since 2000 more than 1300 cases of Cancer of the Pancreas have been
diagnosed in the State of Utah. Many of these patients are triaged to
a single National Comprehensive Cancer Network tertiary care cancer
center. This center maintains cancer patient data in an electronic data
warehouse. The pancreatic cancer patient data on 631 subjects was
extracted in the summer of 2010. In this initial pass, 17,780 unique
events, recorded from an EHR, including cancer stage details, vital
status, radiology and other diagnostic procedure codes, and laboratory
tests were imported into VISCARETRAILS. In order to comply with
patient privacy rules, the event data was extracted from a data ware-
house, and the subjects were anonymized.

4.3 Cancer Survival
This use case demonstration of VISCARETRAILS establishes that the
information in the EHR can be read into the visualization program,
and that the record of events is intuitively accurate.

The VISCARETRAILS display in Figure 1 demonstrates an ex-
pected distribution of patients and expected outcomes. According to
the American Cancer Society, the five year survival for local and re-
gional disease is 31%, while less than 20% of patients present with low
enough stage disease to be considered surgical candidates [1]. In our
population, the tree intuitively and quantitatively demonstrates the sur-
vival. Two-thirds (64%) of subjects present with advanced stage dis-
ease. The median survival for the 9% of the population who presents
with Stage I disease is almost 750 days but only 200 days for subjects
who present at Stage IV. This visual information mirrors that which
is generated statistically by a Kaplan-Meier survival curve, however
is intuitive to the physician end-user, and bypasses interaction with a
statistical program.

Fig. 4. Proposed timed word tree visualization, VTWT , in VISCARE-
TRAILS for the same event tree of Figure 3.

4.4 Identification of unclean and missing data
In the database, the records of Dead (n = 427) or Alive (n = 202) are
recorded. For two patients an assessment of vital status is unknown
(Figure 5). Four of the subjects had events that took place after the
Dead event. When the tree is rooted on Dead, these events appear as
positive branches. This type of unclean data is easily identified in the
visualization tool.

Fig. 5. Data cleaning: by dropping @BEGIN, DEAD, ALIVE and @END
events we are able to visually identify a path that shouldn’t exist: from

@BEGIN direct to @END. Mouse hovering on this path we get a report

showing two patient identifiers and their events between @BEGIN and

@BEGIN. Highlighted NONE event also requires further investigation.
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4.5 Detection of diagnostic testing strategies

The most commonly utilized diagnostic test in the cohort is a CT of the
abdomen and pelvis CT AP, of which 424 patients underwent a total
of 1469 examinations. Figure 6 shows the most common sequences of
diagnostic tests in the Stage IV group of patients. This interface read-
ily demonstrates the types, frequencies and sequences of tests that oc-
cur in the cohort. The hypothesis that prompted this visualization tool
is that differences in survival can be attributed to different diagnostic
tests. An evaluation of Surveillance Epidemiology and End Results-
Medicare-linked data from 2010 [4] suggested that patients with pan-
creatic cancer who underwent an endoscopic ultrasound (EUS) had
improved survival compared to those who did not. We attempted to
replicate this analysis in our data, by looking at subjects who under-
went EUS. However there were only 48 such subjects in the cohort,
making any analysis limited because the absolute number of events
per node tended to be very small.

5 DISCUSSION

5.1 Data interpretation and domain expertise

The interaction and impact of a domain expert in the design of this
tool is an essential component of the tool development. The hypothe-
sis that prompted this visualization tool is that differences in survival
can be attributed to different diagnostic tests. In one pass, examining
the utilization of PET, a curve was generated showing that subjects
who had a PET < 70 days after the staging event had a shorter sur-
vival than those who had a PET > 70 days after the staging event (not
shown). This might suggest that an early PET was associated with
poorer outcomes. However, the physician, suggested rather, that the
subjects who were alive > 70 days after staging, just by being alive,
had more opportunities for surveillance imaging.

In regards to the question of the role of the EUS in the diagno-
sis, the domain expert deemed 48 an unrealistically low number. The
information brought into the tool only pulled from the primary diag-
nosis procedure codes (ICD code). Because multiple procedures may
be coded in a single setting, that is to say an endoscopic retrograde
cholangiopancreatogram (ERCP) will be performed in the same set-
ting as an EUS; we may have caught the primary code for the ERCP,
but missed the secondary procedure code for the EUS. It will be nec-
essary to pull the secondary procedure codes into the database in order
to run this analysis.

Heterogeneous information will be a part of any EHR and subse-
quent analysis as the uptake of these records is inconsistent, and data
standards do not yet exist [3]. The interaction between physicians and
clinical experts and the systems that make it a simple process to iden-
tify of the data that is missing, unavailable, or in error is essential to
optimize the analysis process of the EHR. Some of the inefficiencies
in medicine may be due to events that do not occur and should, such
as recommended screening [5]. Visualization tools may facilitate the
process of identifying steps not taken.

5.2 Limitation

Timed word tree visualizations require events to follow the exact or-
der in which they happened. This is useful for creating a snapshot of
the events that lead up to the end of the study period or death. How-
ever, it may be that it is not exactly the sequence of events or tests but
rather the specific combination of events or tests that segregate popu-
lations. Until it is possible to create distinct groups of test populations
(e.g., patients who had CT AP and EUS compared to patients who
had CT AP, EUS and MRI, regardless of whether the EUS or the
CT AP was the first event) we may be missing relevant patterns in the
data.

6 CONCLUSIONS

Time stamped information visualization tools, like VISCARETRAILS,
capture EHR patient events and display the information in an intu-
itive fashion. This makes it very useful for the purposes of analyzing
a record when there is a discrete start and end event, such as cancer
records. However, challenges persist in optimizing the tool to tease

Fig. 6. Timed word tree with most frequent event paths (≥ 14 patients)
after a patient gets registered in STAGE IV. Events considered are in di-
agnostic test groups CT AP, CT T, EUS/ERCP, MRI A, or PET. Event
@END was included to indicate frequent paths where no event in a di-
agnostic test group occurred (e.g., 33% of the patients are not tested in
any of the considered diagnostic tests: thick branch leaving root event).
Branches are sorted by average transition time.

out both diagnostic testing strategies and bundled events that are asso-
ciated with differences in survival.
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Engaging Clinicians in the Visualization Design Process – Is It Possible? 
 

Kostas Pantazos 

IT-University of Copenhagen 

 

ABSTRACT 
Creating and customizing visualization for electronic health 
record data requires a close collaboration with clinicians, to 
understand their tasks, needs and mental model. This process can 
develop into an infinite process. Taking into consideration the 
existence of clinicians with advanced IT knowledge, but not 
programmers, we focus on engaging them to create their own 
visualizations. This paper presents how clinicians can use uVis 
Studio to create three visualizations by dragging and dropping 
controls into the design panel, and specifying formulas for each 
control in the property grid.  
 
KEYWORDS: Visualization Tool, Spreadsheet Formulas, 
Development Environment, Design Process, Health Care. 
 
INDEX TERMS: H.5.2. [Information Interfaces & Presentation]: 
User Interfaces – Graphical User Interfaces (GUI) 

1 INTRODUCTION 
Healthcare systems provide a huge amount of data and the 
challenge of presenting these data is present. Clinicians need easy 
and intuitive presentations that fulfill their tasks and needs based 
on their experience and knowledge [7]. Most of EHR systems use 
more table or text based presentation rather than visualization 
techniques. Innovative visualizations like LifeLines [9], TimeLine 
[3], etc. provide a better presentation. These visualizations have 
been developed in close collaboration between developers and 
clinicians who have the domain knowledge. Creating and 
customizing advanced visualizations need programming skills and 
considerable time. 

Although several visualizations have been developed for 
clinical data, there is a need for more novel and customizable 
visualizations [3]. Clinicians need presentations which are easy to 
understand and to access the right information [3]. Furthermore, 
the visualization has to match the mental model of the clinician. 
To overcome this challenge, it is recommended that clinicians are 
involved during the development process of a user interface or 
visualization [7].  Applying user-centered design may resolve 
these issues, but still questions like: “What about the clinicians 
that did not participate in the design process? Are the 
representatives a good sample, to conclude to the right 
visualization?”. Furthermore, is the same visualization sufficient 
for the same department but in different hospitals ? Answering 
these questions raises several challenges which are also closely 
related with the available time, budget and resources used.  

Using user-centered design does not solve the problem of 
customizability; adjusting an existing visualization to clinician 
needs. For instance, different departments or different hospitals 
have different needs. Different clinicians perform the same tasks 
in different ways, because of different experiences, knowledge 
and so forth. The same visualizations can be integrated in 
different departments or used by different clinicians, but to 
achieve better user satisfaction some changes may be needed. 
Furthermore, there is a need for more customizable visualizations 
to fulfill users’ needs [3], and more tools which can support this 
customizability.  

Nowadays, some clinicians have gained advanced IT skills, 
starting from simple browsing through web-applications to more 
advanced applications, such as MS Excel or MS Access. For 
instance at Bispebjerg hospital in Copenhagen, Denmark, a 
department uses a system developed in MS Access by one of the 
clinicians. We believe that in the healthcare environment there are 
a considerable number of such clinicians with advanced IT 
knowledge. So, with proper training, engaging clinicians in the 
process of developing their own visualizations using a specialized 
development environment will increase even more the possibility 
of developing successful visualizations for clinical data. 

We present uVis, a formula-based visualization tool for 
clinicians. This tool provides clinicians with a development 
environment (uVis Studio) to design their visualizations. 
Clinicians with advanced spreadsheet level knowledge and 
familiar with basic database concepts can design visualization by 
dragging and dropping controls into the design panel. Next, 
specifying simple and advanced formulas in the property grid, 
they can bind controls to data and specify controls properties such 
as color, height, width, etc. The uVis Studio provides the basic 
features a development environment has, and more specialized 
ones such as data related intellisense and a design panel which 
shows visualizations as it would look to the end-users, described 
in the next sections. Finally, clinicians without IT experience can 
collaborate with IT experienced clinicians to create visualizations 
and use them as well. 

2 RELATED WORK 

2.1 Visualizations in healthcare 
One of the most well-known visualizations in healthcare is the 
LifeLines [9]. It presents the history of a patient’s medical record 
and it was designed in close collaboration with clinicians initially, 
and later with a cardiologist. This presentation uses the timeline 
metaphor, data presented in facets, color coding and size coding. 
The evaluation showed that the Lifelines was more 
understandable and that clinicians responded faster than the 
traditional presentations. This visualization was developed in 
Java, and customizing it requires advanced programming skills. 
The TimeLine system by Bui et. al. visualizes problem-centric 
patient data [3]. Their study showed that clinicians need more 
flexible visualizations which fulfill their needs and tasks. A need 
for more flexible visualization and customizable by clinicians is 
raised by An et. al. [1]. An integrated viewer for EHR was 
developed with basic visualization techniques, where clinicians 
were able to hide and show visualizations but not customize them 
to their needs. 

Although, several previous research projects have concluded 
that there is a need for more customizable visualizations in 
healthcare, to our knowledge there is no previous research 
addressing this problem or engaging clinicians directly in the 
development process. 

2.2 Visualization tools 
We investigated some popular tools in the market for non-
programmers mainly used in the business area. MS Excel [8] 
provides a user-friendly interface where built-in visualizations can 
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be created with few steps. However, this tool provides a limited 
number of visualizations which are not fully customizable. For 
instance, graph colors cannot reflect data values. Furthermore, 
users cannot create new visualization types and integrate them 
into MS Excel.  Finally, due to the amount and structure of data in 
an EHR system, clinicians may encounter difficulties in creating 
meaningful visualizations with MS Excel.  Other visualization 
tools such as Spotfire [10] and Tableau [11] are more specialized 
in data visualization and provide a larger variety of visualizations. 
Nevertheless, these tools do not support users to create and 
customize advanced visualizations, such as LifeLines. User 
creativity is restricted to the pre-designed views. Furthermore, 
creating appropriate visualizations with Tableau or Spotfire needs 
some advanced knowledge on how to create visualizations.  

In academia, there are several visualization toolkits [2, 5, 6] 
for programmers. Programmers can create and customize 
visualizations by means of programming. Unfortunately, this 
approach is too complex for users with advanced spreadsheet-like 
knowledge, such as clinicians.  Most of these toolkits miss an 
integrated development environment. Usually, they can be 
integrated in general-purpose integrated development 
environments (IDE) such as Visual Studio, Eclipse, etc., but still 
is not enough for non-programmers. A specialized IDE should 
support users in creating and customizing visualizations by means 
of simple actions such as drag-and-drop. 

3 SOLUTION 
Previous research [1, 3] has been using user-centric design where 
clinicians had a close collaboration with the developer. We 
propose a different approach on developing visualizations for 
healthcare data: allow clinicians with advanced IT knowledge to 
create and customize their own visualizations using uVis.  

uVis Studio (figure 2) is the development environment of uVis 
and contains six work areas. Toolbox lists the available controls, 
and supports drag-and-drop. Design Panel shows the visualization 
as it would look to the end-user. This panel is updated every time 
a control is dragged-dropped or a control property is changed. 
Hence, the user sees exactly the same screen in development 
mode as well as in end-user mode. Property-Grid is the area 
where a user can type the formulas. We integrated the intellisense 
feature in the Property-Grid to reduce typing errors and 
misunderstandings. Furthermore, the intellisense assists clinicians 
with suggestion related to control properties, tables and table 
fields. Solution Explorer is the area where project files are listed. 
The clinician can create a new project by adding a visualization 
mapping document (.!"#$) and a visualization file (.!"#). %"#$ 
files contain information regarding the database the user is using, 
the tables, etc. The %"# file contains the visualization 
specifications. Design Modes allows the user to choose the mode 
for viewing and interacting with visualizations in the design panel. 
For instance, the user can select the mode InteractionMode, which 
deactivates event handlers attached to the visualization in the 
development environment.  Data Map, currently under 
development, provides a visual overview of tables, fields and 
relationships in the database the user is using. It resembles an 
entity relationship (ER) diagram. 

In the remainder of this section, we present three scenarios, 
three visualizations and elaborate on how they were created by the 
author.  

3.1 Scenario 1: Simple LabResults visualization 
In one of the clinics at Copenhagen Hospital, clinicians use the 
VistA EHR system. For each patient that comes in the clinic, they 

have to check the lab results of the patient. Figure 1.a presents a 
screenshot of the presentation of a patient lab result that clinicians 
use, and our simple solution using uVis in figure 1.b. Clinicians 
have to go through all the cumbersome texts for more than one lab 
test and find the important information for the patient. The lab test 
has a positive or negative result. A simple overview of the current 
state of the patient is missing. In the early phase of our research, 
we collaborated with clinicians who identified three important 
variables (date, result and lab name) in the texts, which are used in 
our visualization created using uVis Studio. Our approach is 
trying to minimize this collaboration and empower the clinicians 
to create their visualization. 

Preconditions: uVis can visualize only relational data at the 
moment, for instance data in MS Access. The %"#$ file has to be 
created the first time by the database manager, unless the clinician 
who will use uVis studio has good database knowledge. 
Furthermore, an introduction of how the studio works and how to 
use formulas is necessary for clinicians. 

3.1.1 Using uVis Studio 
Figure 2 shows a screenshot of the studio, containing a simple 
visualization for the lab results, and some of the steps clinicians 
have to follow. The clinician opens the uVis Studio and selects the 
%"#$ file using the explorer. The default %"# file is opened in the 
design panel. In our case it will be an empty form.  

Clinicians can drag and drop controls (e.g. panel, label, textbox, 
etc.) in the design panel. Furthermore, they can resize the controls 
and move them around the design panel. For each control they 
specify simple and advanced formulas for control properties in the 
property grid. Every change done in the property grid reflects on 
real-time on the design panel. Unlike other development 
environment, uVis Studio shows the form exactly as it will be 
shown at the end-user outside Studio. Clinicians use the property 
grid to specify the formulas. Intellisense feature helps them to 
write the correct formulas. For instance, clinician starts typing 
“&'"” in the ()*)+,-.&/ property and a list of suggestions will pop-
up with name of tables, table fields, controls and control 
properties that contain “cli”.  

3.1.2 Key Principles of uVis Kernel 
In this section we present some of the key principles of uVis 
Kernel which are used in creating the LabResult visualization, 
Figure 2.   

Controls: Visualizations are created by combining .Net 
controls, simple shapes (e.g. triangle) and several special uVis 
controls (e.g. timescale). A control can be bound to data that 

 
Figure 1. a) Current presentation at the clinic and b) a 
potential solution for presenting patient Lab Results.  
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makes it repeat itself. A control has a number of properties that 
specify its appearance and its behavior.  

Formulas: Control properties can be specified by spreadsheet-
like formulas. The formula specifies how to compute a property 
value for a control. A formula can refer to data in the database, 
control properties. uVis kernel computes the formulas for each 
control, and sets the property values accordingly.  

Bind control to data: Each control may have a data source that 
binds it to data rows. To define the data source, in this case the 
clinician specifies the !"#"$%&'(), the uVis property of the 
control. The clinician writes a formula which represents an SQL 
statement. uVis kernel translates the !"#"$%&'() formula into an 
SQL statement, retrieves data from the database and generates the 
corresponding record set. Next, the control creates one control for 
each row in the record set. Each control is bound to a row in the 
record set.  

To create the visualization showed in figure 2, we used only 
two tables from our EHR database: *+,)-#."/+) and *+,-,("+!"#". 
Each patient may have one or more clinical data. For instance in 
Figure 2, the patient is tested three times for P-Human 
immundefektvirus 1+2. 

The clinician specifies the DataSource of panel PanelLab as 
follows:  
!!!!!"#$%&'()*#%!+,%-%!!"$.$#/%0$1'-)'$2&345*%-!6!!!!!!!!!!
!!!!!(%7'827"9/:(%7'0
*+,)-#."/+) refers to a table in the data model and 

*,1,+2)3,4#'"#,%-5&6/)'0is a field in table *+,)-#."/+). The dot (.) 
operator allows the clinician to access a table field. .)7#8%7*92 is 
the control of type .)7#8%7 that shows the patient civil registration 
number (CPR). The operator ! allows the user to access a control 
property. Thus, .)7#8%7*92:.)7# is the current patient’s CPR. As 
a result, the data source of 9"-)+;"/ is the patient record whose 

civil registration number is specified in .)7#8%7*92. As a result, 
uVis kernel creates one 9"-)+;"/ control. 

To show the lab tests of a patient, the user drags and drops a 
panel (9"-)+.)4#) inside 9"-)+;"/ and specifies the !"#"$%&'() of 
9"-)+.)4# as follows:  
!!!!9)-%&'!;<!"#$&$=)#>)')?!0
9"')-# means the data parent of 9"-)+.)4#, in this case 

9"-)+;"/. The operator <= allows us to navigate from one row to 
multiple rows. Therefore, we navigate from the parent row (the 
*+,)-#."/+) row) to the related *+,-,("+!"#" rows. This allows us 
to access the lab tests of the patient. uVis kernel automatically 
detects the tables and table fields used in the formulas. Next, uVis 
Kernel translates the formula to an SQL statement, which is 
executed and a record set is created. In this case the record set 
contains three rows. Clinicians are not involved in this process, 
apart from the fact that they need to specify the correct formula in 
the property grid.  

3.2 Scenario 2: Advanced LabResults visualization 
We present in addition lab tests with numerical value as results. 
Instead of going through the text, clinicians can create or 
customize the first version of Lab Results Overview and present 
numerical lab tests as shown in Figure 3.  

Following the same principles presented before, the clinician 
can bind controls to data. 9"-)+.)4#$("+) presents visually the 
lowest and highest value this test may have in theory. However, in 
this case one of the test result was higher than 10. In this 
presentation, the clinician can spot it out easily, compared to the 
text based presentation. To align ;/+2)4&+#;,-) to 9"-)+.)4#$("+) 
clinician specifies the Left property to:  
9)&%#(%1'@=)#%:A%B'!!

 
Figure 2. Creating LabResults overview with uVis Studio. 
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To calculate the width of the !"#$%&'#(!)*%, the clinician 
specifies this formula for the width property:  
!!!!"#$%&'%()*+#&%,-./)0!!1!2%32%#(45%6%$)7#&4%!8!
92%37#&4%:.;0!!<!2%37#&4%=>?@3!!
+% is used to refer to the current instance, which is bound to a 

row. Using the dot operator we can navigate to a specific field of 
this row (+%,&'-%.*%(/,#'%01 /,#'%2)34 and /,#'%!56 in our 
case). 

3.3 Scenario 3: LabResults using LifeLines  
In the last scenario, the clinician creates a simple LifeLines 
visualization for some of the lab tests, shown in figure 4. 

The clinician follows the same steps as before to bind controls 
to data. The difference in this case is the Timescale control, which 
is a uVis control. The clinician defines the period shown in the 
timescale by specifying the 75-8%-/,#'%&1(5:  
!!!!!ABCDD<CE<CDAF!ABCDD<CG<CDA!!

Clinicians can interact with the TimeScale control, moving the 
date backwards or forwards. To align the !"#!,"$%&'#( the 
clinician specifies the left position to:  
!!!!!'.6%*+#&%=#H,:">(!96%3'5#$(I#)%@3!!
295&1is a special function in the timescale which translate date 

to pixels. 

4 DISCUSSION 
Nowadays, computers are part of our daily and working life. 

More and more users are using computers to facilitate their 
working process. Starting from simple usage (such as checking 
emails, browsing web application), users, especially the new 
generation, are moving towards a better and broader 
understanding of how to utilize computers in daily work. The real 
case in Copenhagen Hospital, where a clinician developed an 
application in MS Access, confirms this tendency. Although 
several visualization tools exist, there is a need for new tools 
which provide a development environment for clinicians with 
advanced IT knowledge, but not programmers. Such a tool will 

facilitate the development process, allowing clinicians to create 
and customize their own visualization based on the department 
needs or their mental model.  

In this paper, we present an on-going research project, which 
focuses on engaging clinicians in developing simple and advanced 
visualization using spreadsheet-like formulas. The spreadsheet 
formulas have proven to be successful approach among users and 
programmers [4]. Furthermore, by means of the development 
environment, clinicians can customize their visualization and 
adjust them to fulfill their needs.  

The abovementioned visualizations were created by the author 
who has a good understanding of uVis Studio and formula 
principles, but is not a clinician. A more in depth evaluation with 
real clinicians is needed, and we are planning to conduct it in the 
future.  The evaluation will show if our approach is adequate and 
if it is possible to engage clinicians in the visualization design 
process. 

Now, we are focusing on making uVis Studio more stable. Data 
Map is being developed and simpler and advanced controls are 
being developed. A more specialized error messaging system for 
clinicians is being developed.  

5 CONCLUSION 
In this paper we presented a new visualization tool for clinicians. 
Clinicians can create and customize visualizations by means of 
iteratively dragging and dropping controls and specifying 
spreadsheet-like formulas. Although, three visualizations for lab 
results were developed, we plan to conduct an evaluation with real 
clinicians. To conclude, in this paper we present a first attempt to 
engage clinicians more and allow them to visualize the data in 
their own way. 
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Figure 3. LabResults Overview using uVis Studio 
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Outflow: Visualizing Patient Flow by Symptoms and Outcome
Krist Wongsuphasawat, and David H. Gotz

Fig. 1. Outflow aggregates temporal event data from a cohort of patients and visualizes alternative clinical pathways using color-coded
edges that map to patient outcome. Interactive capabilities allow users to explore the data and uncover insights.

Abstract—Electronic Medical Record (EMR) databases contain a large amount of temporal events such as diagnosis dates for
various symptoms. Analyzing disease progression pathways in terms of these observed events can provide important insights into
how diseases evolve over time. Moreover, connecting these pathways to the eventual outcomes of the corresponding patients can
help clinicians understand how certain progression paths may lead to better or worse outcomes. In this paper, we describe the
Outflow visualization technique, designed to summarize temporal event data that has been extracted from the EMRs of a cohort of
patients. We include sample analyses to show examples of the insights that can be learned from this visualization.

Index Terms—Outflow, Information Visualization, Temporal Event Sequences, State Diagram, State Transition

1 INTRODUCTION

Electronic medical records (EMRs) are proliferating throughout the
healthcare system. At major medical institutions such as hospitals
and large medical groups, these computer-based systems contain vast
amounts of historical patient data complete with patient profile in-
formation, structured observational data such as diagnosis codes and
medications, as well as unstructured physician notes. The informa-
tion in these enormous databases can be useful in guiding the diagno-
sis of incoming patients or in clinical studies of a disease. However,
the vast amount of information can be overwhelming and makes these
datasets difficult to analyze. In particular, EMR databases contain a
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large amount of temporal disease events such as diagnosis dates and
the onset dates for various symptoms. Analyzing disease progression
pathways in terms of these observed events can provide important in-
sights into how diseases evolve over time. Moreover, connecting these
pathways to the eventual outcomes of the corresponding patients can
help clinicians understand how certain progression paths may lead to
better or worse outcomes.

In this paper, we describe the Outflow visualization technique. Out-
flow is designed to summarize temporal event data that has been ex-
tracted from the EMRs of a cohort of patients. We present a novel
interactive visual design which combines multiple patient records into
a graph-based visual presentation. Users can manipulate the visualiza-
tion through direct interaction techniques (e.g., selection and brushing)
and a series of control widgets. The interactions allow users to explore
the data in search of insights. Throughout the paper we describe Out-
flow using a motivating problem related to the diagnosis of congestive
heart failure. We include two sample analyses to show examples of the
insights that can be learned from this visualization.

The rest of the paper are organized as follows. We describe our
motivating problem in Section 2 and review related work in Section 3.
We explain the design of Outflow in Section 4 and demonstrate pre-
liminary analyses in Section 5. The paper concludes in Section 6.
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Fig. 2. Multiple medical records are aggregated into a representation

called an Outflow graph. This structure is a directed acyclic graph (DAG)

that captures the various event sequences that led to the alignment point

and all the sequences that occurred after the alignment point. Aggregate

patient statistics are then anchored to the graph to describe specific

patient subpopulations.

2 MOTIVATING PROBLEM

Congestive heart failure (CHF) is generally defined as the inability
of the heart to supply sufficient blood flow to meet the needs of the
body. CHF is a common, costly, and potentially deadly condition that
afflicts roughly 2% of adults in developed countries with rates growing
to 6-10% for those over 65 years of age [12]. The disease is difficult
to manage and no system of diagnostic criteria has been universally
accepted as the gold standard.

One commonly used system comes from the Framingham

study [11]. This system requires the simultaneous presence of at least
two major symptoms (e.g., S3 gallop, Acute pulmonary edema, Car-
diomegaly) or one major symptom in conjunction with two minor
symptoms (e.g., Nocturnal cough, Pleural effusion, Hepatomegaly).
In total, 18 distinct Framingham symptoms have been defined.

While these symptoms are used regularly to diagnose CHF, our
medical collaborators are interested in understanding how the various
symptoms and their order of onset correlate with patient outcome. To
examine this problem, we were given access to an anonymized dataset
of 6,328 patient records. Each patient record includes timestamped en-
tries for each time a patient was diagnosed with a Framingham symp-
tom. For example:

Patient#1:(27 Jul 2009, Ankle edema), (14 Aug 2009, Pleural effusion), ...

Patient#2:(17 May 2002, S3 gallop), (1 Feb 2003, Cardiomegaly), ...

In line with the use of Framingham symptoms for diagnosis, we as-
sume that once a symptom has been observed it applies perpetually.
We therefore filter the event sequences for each patient to select only
the first occurrence of a given symptom type. The filtered event se-
quences describe the flow for each patient through different disease
states. For example, a filtered event sequence symptom A → symp-
tom B indicates that the patient’s flow is no symptom → symptom A
→ symptoms A and B. The data also has an outcome for each patient
(dead (0) or alive (1)).

Our analysis task, therefore, is to examine aggregated statistics for
the flows of many patients to find common disease states and transi-
tions between states. In addition, we wish to discover any correlations
between these paths and patient outcome.

3 RELATED WORK

3.1 Temporal Event Sequence Visualizations
Many researchers have explored visualization techniques for temporal
event sequences. In the early years, many systems focused on visual-
izing a single record [1, 2, 6, 8, 9, 16]. The most common approach
is to place the events on a horizontal timeline according to the time
that events occurred. Later, attention shifted towards visualizing mul-
tiple records in parallel. One popular technique is to stack instances

Fig. 3. Outflow visually encodes nodes in the Outflow graph using rect-

angles while edges are represented using two distinct visual marks: time

edges and link edges. Color is used to encode average outcome.

of single-record visualizations and to provide additional functionality
for searching [7, 21, 22, 23, 26], filtering [23], and grouping [5, 14].
However, these approaches do not aggregate nor provide any abstrac-
tion of multiple event sequences. Most recently, a technique called
LifeFlow [25] introduced a way to aggregate and provide an abstrac-
tion for multiple event sequences. However, LifeFlow’s aggregation
combines multiple event sequences into a tree, while Outflow’s aggre-
gation combines multiple event sequences into a graph.

3.2 State Diagram Visualizations
Our approach aggregates event sequences into an Outflow graph which
is analogous to a state diagram [4] or state transition graph. State di-
agrams are used in computer science and related fields to represent a
system of states and state changes. State diagrams are generally dis-
played as simple node-link diagrams where each state is depicted as
a node and transitions are drawn as links [3]. Many visualizations of
state diagrams have been developed [3, 17, 18, 20, 24]. These typically
focus on multivariate graphs where a number of attributes are associ-
ated with every node. Some support exploration of sequences of three
or more states. Variants on traditional state diagrams have also been
explored, such as Petri nets (also known as a place/transition net or
P/T net) [13] which offer a graphical notation for stepwise processes
that include choice, iteration, and concurrent execution. However, to
the best of our knowledge, these approaches do not display or allow
easy comparison of the transition time, which is one of Outflow’s de-
sign goals.

3.3 Flow & Parallel Coordinates Visualizations
Another group of visualizations called Sankey Diagrams [19] was de-
signed to visualize flow quantities in process systems. However, they
only focus on displaying the proportion of the flow that splits in differ-
ent ways, without temporal information. The visual display of Outflow
also looks similar to parallel coordinates [10], but the underlying data
types are different. Parallel coordinates are used for categorical data
while Outflow was designed for temporal event sequences.

4 DESCRIPTION OF THE VISUALIZATION

4.1 Data Aggregation
The first step in Outflow is data aggregation. We begin by selecting
an alignment point. For example, we can align a set of patient event
sequences around a state where all patients have the same three symp-
toms A, B and C and no other symptoms. After choosing an alignment
point, we construct an Outflow graph (Figure 2) using data from all
patients that satisfy the alignment point.
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The Outflow graph is a state diagram represented using a directed
acyclic graph (DAG). The states are the unique combinations of symp-
toms that were observed in the data. Edges capture symptom transi-
tions. Each edge is annotated with the number of patients that make
the corresponding transition, the average time gap between the states,
and the average outcome of the patient group.

Therefore, the Outflow graph captures all event paths that led to the
alignment point and all event paths that occur after the alignment point.
Our prototype implementation lets users select a target patient from
the database and uses the target patient’s current state as the align-
ment point. This approach allows for the analysis of historical data
when considering the possible future progression of symptoms for the
selected target patient.

4.2 Visual Encoding

Based on the information contained in the Outflow graph, we have de-
signed a rich visual encoding that displays (a) the time gap for each
state change, (b) the cardinality of patients in each state and state tran-
sition, and (c) the average patient outcome for each state and transi-
tion. Drawing on prior work from FlowMap [15] and LifeFlow [25],
we developed the visual encoding shown in Figure 3.

Node (State): Each node is represented by a rectangle which has
its height proportional to the number of patients.

Layer: We slice the graph vertically into layers. Layer i contains all
Outflow graph nodes with i symptoms. The layers are sorted from left
to right, showing information from the past to the future. For example,
in Figure 1, the first layer (layer 0) contains only one node, which
represents patients that have no symptom. The next layer (layer 1) has
five nodes, one for each first-occurring symptom in the patient cohort.

Edge (Transition): Each edge is displayed using two visual marks:
a time edge and a link edge. Time edges are rectangles that whose
width is proportional to the average time gap of the transition and
height is proportional to the number of patients. Link edges connect
nodes and time edges to convey sequentiality.

End Node: Each patient’s path can stop in a different state. We use
a trapezoid followed by a circle to mark these points. The height of the
trapezoid is proportional to the number of patients whose path stops at
a given point.

Color-coding: Colors assigned to edges and end nodes are used to
encode the average outcome for the corresponding set of patients. The
color scales linearly from red to green with red representing the worst
and green representing the best outcomes.

4.3 Interactions

To allow interactive data exploration, we further designed Outflow to
support the following user interaction capabilities.

Panning & Zooming: Users can pan and zoom to uncover detailed
structure.

Filtering: Users can filter both nodes and edges based on the the
number of associated patients to remove small subgroups.

Symptom Selection: Users can select which symptom types are
used to construct the Outflow graph. This allows, for instance, for the
omission of symptoms that users deem uninteresting. For example,
a user can remove Nocturnal Cough if they deem it irrelevant to an
analysis and the visualization will be recomputed dynamically.

Brushing: Hovering the mouse over a node or an edge will high-
light all paths traveled by patients passing through the corresponding
point in the outflow graph (see Figure 4).

Tooltips: Hovering also triggers the display of tooltips which pro-
vide more information about individual nodes and edges. Tooltips
shows all symptoms associated with the corresponding node/edge, the
average outcome, and the total number of patients in the subgroup (see
Figure 4).

5 PRELIMINARY ANALYSIS

We have integrated the Outflow visualization technique into a proto-
type decision support system for CHF patients called PrognoSim. This
system uses a patient similarity-based approach to provide medical in-
telligence. PrognoSim is a web-based application written using Java’s

J2EE platform and Apache Tomcat as the application server environ-
ment. The PrognoSim user interface is rendered using HTML and
JavaScript. Dojo is used for traditional user interface widgets. The
Outflow visualization component is rendered on an HTML 5 canvas
via a scenegraph-based JavaScript visualization library named CVL.

We used Outflow within PrognoSim to view the evolution over time
for a cohort of CHF patients similar to a clinician’s current patient.
Our initial analysis illuminates a number of interesting findings and
highlights that various types of patients evolve differently. We share
two such evolution patterns as examples of the type of analysis that
can be performed using the Outflow technique.

Leading Indicators. In several scenarios, patient outcome is
strongly correlated with certain leading indicators. For example, con-
sider the patient cohort visualized in Figure 1. The strong red and
green colors assigned to the first layer of edges in the visualization
shows that the eventual outcome for patients in this cohort is strongly
correlated with the very first symptom to appear. Similarly, the strong
red and green colors assigned to the first layer of edges after the align-
ment point show that the next symptom to appear may be critical in
determining patient outcome.

Progressive Complications. In contrast to the prior example,
which showed strong outcome correlation with specific paths, the pa-
tient cohort in Figure 5 exhibits very different characteristics. At each
time step, the outcomes across the different edges are relatively equal.
However, the outcomes transition from green to red when moving left
to right across the visualization. This implies that for this group of
patients, no individual path is especially problematic historically. In-
stead, a general increase in co-occurring symptoms over time is the
primary risk factor.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a novel visualization called Outflow that sum-
marizes temporal event data extracted from multiple patient medical
records to show aggregate disease evolution statistics for a cohort of
patients. We described our motivating problem in the study of conges-
tive heart failure and presented the main visual design concepts behind
our visualization. We also described a number of interactive features
in Outflow that allow more sophisticated analyses. Finally, we briefly
shared two example analysis results which highlight some of the capa-
bilities of our approach.

Due to these early promising results, we plan to continue work on
this topic in the future. We believe that there are many promising direc-
tions to explore including integration with forecasting/prediction algo-
rithms, the use of more sophisticated similarity measures, and deeper
evaluation studies with practitioners. Moreover, the flexibility of Out-
flow’s design means it can be used beyond our motivating problem
and can be useful for a range of medical (and non-medical) problems
which involve temporal event data.
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ABSTRACT 
We describe our recent work with star glyph data visualization 
methods applied to clinical data derived from National Institutes 
of Health (NIH) clinical research protocols and we suggest a 
crowdsourcing approach for developing data visualization and 
computational intelligent software to mine data and discover new 
knowledge using clinical research data available through the NIH 
Biomedical Translational Medicine Informatics System (BTRIS). 
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1    INTRODUCTION 
Data visualization methods can help us see and understand 
relationships in large multifactorial data arrays.  They can also 
assist us in detecting patterns and anomalies not obvious with 
other forms of data representation. Data visualization methods are 
becoming increasingly popular for data exploration, data mining, 
information retrieval, and hypotheses suggestion in many different 
subject matter domains.  
  
Our interest in data visualization has grown from our work in 
applying data visualization methods (particularly star glyphs and 
interactive parallel coordinates) to NIH clinical research protocol 
data. We believe these methods have good potential for catalyzing 
new medical knowledge insights and for producing informative 
data patterns that suggest hypotheses worthy of exploring. We 
now want to develop production quality software with good 
graphical user interfaces and good interfaces to archived data 
sources in order to expand our data visualization work and to 
provide    extended    computational     support     for    biomedical  
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researchers.  We are in an ideal position at the NIH to develop and 
showcase this kind of software and to put it into practical use in 
supporting many of the more than a thousand clinical research 
protocols active here. 
 
When star glyphs and other data visualization methods are made 
available in standardized, well-documented, easy-to-use readily-
available software they should become important tools for gaining 
new insights and knowledge in medicine and other disciplines. 
 
Here we show some of our current work in applying star glyph 
data visualization methods to clinical research data derived from 
NIH clinical research protocols. We also suggest a crowdsourcing 
approach to develop data visualization and computational 
intelligent software to mine data and discover new knowledge by 
using the clinical research protocol data available through the NIH 
Biomedical Translational Medicine Informatics System (BTRIS). 

2    STAR GLYPH BASICS 
Glyphs represent data values as shapes, textures and color 
attributes of graphical symbols [1, 2]. Many glyph representations 
have been proposed over the years including star glyphs [3], 
Andrews glyphs, [4], Chernoff faces [5], stick figure icons [6], 
shape coding [7] and DeLeo’s star glyph movies [8]. Star glyphs 
(also known as radial plots) represent data values in the form of a 
star. Figure 1 illustrates a basic coordinate system frame for 
constructing a star glyph. This coordinate system indicates that 
there will be 20 variables plotted and that each variable will be 
scaled to the 0-1 interval and plotted on one of the spokes (rays) 
in the star glyph frame.   Note that  0  corresponds to  the center of   

1

Figure 1. A coordinate system frame for constructing star glyphs.  
 

the figure and 1 corresponds to the end of a spoke. The variables 
can be comprised of any mix of continuous and categorical 
variables.  Any reasonable number of variables can be plotted.  
The ordering of the valuables is arbitrary and may be selected 
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according to attributes peculiar to the specific kind of data being 
plotted. There are many alternative ways to scale data onto the 0-1 
as will be discussed below. 

3    OUR EXPERIENCE WITH STAR GLYPHS 
Here we present examples of the work we have been doing with 
star glyphs in clinical medicine applications. 

3.1   Clinical Laboratory Data 
Each of the two star glyph examples in Figure 2 show twenty 
serum derived analyte (chemical constituent) data values each 
plotted on one spoke or ray of the star.            

     

Figure 2.  Star glyph plots of serum analyte values associated with 
a  patient with kidney disease (left) and a patient with liver disease 
(right) with below reference  values plotted in inner blue band, 
normal reference range values in the middle green band and high 
reference range values in the outer red band.  The outer analyte 
identifier circles are color coded to indicate in which of the three 
bands the individual analyte values fall. (Note: rings are .1 apart.) 
 

The serum analyte values represented in Figure 2 were derived 
from serum samples drawn from two different patients and 
produced by an clinical chemistry automated analyzer in the NIH 
Clinical Center Department of Laboratory Medicine and made 
available by Alan Remaley, MD, PhD. In this figure each analyte 
value is scaled on the 0-1 interval and plotted on its designated ray 
with 0 corresponding to the center of the plot and 1 corresponding 
to the end of the ray.  The scaling transformation was designed to 
emphasize values falling outside the normal reference ranges and 
to compress scaled analyte values that fall within the normal 
reference range inside the .4 to .6 interval (the green middle 
band). After the scaled data values are plotted, adjacent points are 
connected to form a star-like pattern i.e. a “star glyph.”  One 
obvious advantage of the star glyph is that it gives an immediate 
visual impression of multifactorial data – an impression that is 
more readily perceived and understood by the human viewer than 
a list of numbers on a computer screen or on a printed page. It 
also shows distinct patterns that are more recognizable than those 
obtained with more traditional data plots.  For example the analyte 
value differences between the kidney and liver diseased patients 
are immediately obvious when looking at Figure 2. Thus star 
glyphs can be used to suggest diagnoses and classes. [8] 

3.2   Sweat Patch Data  
According to NIMH researchers, skin patch tests can detect 
abnormal levels of markers for neural and immune function in the 
sweat of patients with histories of depression.  If confirmed, this 
non-invasive technique could become an easier alternative to 

blood tests for predicting risk for inflammatory disorders, such as 
metabolic syndrome, cardiovascular disease, osteoporosis, and 
diabetes, which often occur with depression [9].  Figure 3 shows 
star glyphs constructed with sweat patch data provided by NIMH 
researchers Esther Sternberg, MD and Marni Silverman, PhD. The 
data represent protein analyte values measured from sweat patches 
that had been worn for 24 hours by two different women, one 
healthy and the other diagnosed as depressed. The third smaller 
one in the upper middle is considered unknown.  Perhaps in time 
clinicians could use star glyphs like this to suggest diagnoses and 
to recognize disease and syndrome subtypes. 
 

DepressedHealthy

 
  

Figure 3.  Star glyphs representing protein analyte value markers 
for neural and immune function found in the sweat of two women, 
one healthy (left) and one diagnosed as depressed (right).  

3.3   Corticobasal Syndrome Subtyping 
Corticobasal Syndrome (CBS) is a neurodegenerative disorder 
that has several associated major subgroups including. 
Alzheimer’s Disease (AD), Corticobasal Degeneration (CBD), 
Frontotemporal Dementia (FTD), Pick’s Disease (PD) and 
Progressive Supranuclear Palsy (PSP). It is very difficult to 
differentiate these subgroups in vivo, and currently pathological 
diagnosis at autopsy is the gold standard. With Jordon Grafman, 
PhD, NINDS we used star glyphs to plot examples of different 
corticobasal syndrome patients for the purpose of gaining new 
insights. The data were results from cognitive psychology test 
scores.  Examples are shown in Figure 4. [10]   

 
 

Figure 4.  Star glyph plots illustrating corticobasal syndrome 
subtyping. 
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3.4   Post Traumatic Stress Disorder (PTSD) 
The Beck Depression Inventory (BDI, BDI-II), created by Dr. 
Aaron T. Beck, is a 21-question multiple-choice (1 to 4) self-
report inventory, used for measuring the severity of depression. In 
its present version the questionnaire is designed for individuals 
aged 13 and over, and is composed of items relating to symptoms 
of depression such as hopelessness and irritability, cognitions 
such as guilt or feelings of being punished, as well as physical 
symptoms such as fatigue, weight loss, and lack of interest in sex. 
We propose the use of star glyphs to visualize individual patient 
scores to illustrate depression as well as other psychological 
subtypes as illustrated with fictional BDI data in Figure 5. We 
have recently started a project in which we expect to apply this 
idea to patients suffering with war inflicted   brain injury and post 
traumatic stress disorder. In this project we may be able to use our 
experience with star glyph subtyping corticobasal syndrome 
patients as just discussed. We are especially interested in patient 
psychological subtyping as well as before and after observations 
of the effects of holistic interventions.  We plan to employ star 
glyph movies (discussed next) as time-varying visual records of 
patient wellness/illness status.   

            
Figure 5. Star glyph with Depression Inventory data 

4   STAR GLYPH MOVIES 
In the examples in Section 3 above single star glyph images were 
used to represent static data views of related multifactorial 
parameter values - static because data displayed corresponds to a 
single time point.  In most subject matter domains such as 
medicine, parameter values change dynamically in time. For 
example, a patient’s serum analyte values will change over time in 
response to disease and treatment processes as well as just 
naturally in healthy states.  We recently introduced the idea of 
creating star glyph movies to visualize such dynamic changes in 
data [8]. To do this, values of the parameters are collected at 
different points in time.  Consecutive time-tagged data sets are 
then used to compute intermediate finer time-granularity star 
glyphs by linearly interpolating each of the data elements in the 
consecutive star glyph data values for equal time intervals. Then 
linear-interpolated intermediate images associated with the same 
subject at fixed time increments, e.g., per day, are computed. The 
original and interpolated images are then strung together in a time 
sequence and played out as a movie.   Issues concerning how 
many data sets and how fine the granularity are application 
dependent and can be resolved over time with experience in 
creating and attempting to get knowledge from these movies.  

Again, scaling is an important issue here and can be optimized 
also with experience.  We have developed software to 
demonstrate star glyph movies and have demonstrated it with time 
varying analyte values.  Figure 6 shows an example of this with 
star glyphs representing analyte values and the time dimension 
indicated by means of the blue time-shadow images.  Star glyph 
movies provide time as another dimension for knowledge data 
discovery. Star glyph movies could be made to illustrate serum 
analyte values and psychological variables such as those in the 
Beck Depression Inventory change over time.  Side-by-side star 
glyph movies of patient and normal volunteer subject data could 
be displayed. The star glyph movies would likely demonstrate 
rates and magnitudes of parameter value changes over the course 
of compared treatments and may help to identify crucial time 
windows that predict treatment successes and failures.  Also many 
diseases have flare periods followed by quiescent periods.  Star 
glyph movies may be useful in identifying flare periods as well as 
the cyclical aspects of certain disease manifestations. 

5    DATA SCALING 
Figure 6 shows scaling differences created by star glyph movie 
shadow tracings. In the image on the left, the normal reference 
range was scaled to the .4 to .6 interval.  In the one on the right 
the entire normal reference range was scaled to .5. There are many 
ways to scale data, such as range scaling, sigmoid function 
transformed z-score scaling and nonparametric (rank order) 
scaling.  Scaling selection must be application specific. 
 

   
 

Figure  6.  Shadow tracings of star glyph movies illustrating two 
different scaling methods. 

6   PRODUCTION SYSTEM DESIGN 
We would like to build the production-quality data visualization 
and computational intelligent system illustrated in Figure 7. 
 

SMART-MARTTM

Provides application 
programs to clients

BTRIS
Provides data views 

to clients

Client Computer
Data views downloaded from BTRIS

Application programs downloaded from SMART-MARTTM

 

Figure 7. Production-quality system design for downloading data 
views from BTRIS and application programs from SMART-
MARTTM 
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The purpose of this system is to facilitate biomedical research by 
making data views and application programs readily available to 
biomedical researchers. The design depicted in Figure 7 shows 
both data views and application programs downloaded into a 
client’s computer.  Having both data and application programs 
resident in the client’s computer assures data confidentiality, 
which is essential in data-sensitive applications such as medicine.  
We refer to the application program server as SMART-MARTTM 
which we envision to be a generally available web accessible 
server containing a library of data visualization and other 
computational tools provided by contributors by means of 
crowdsourcing (discussed next) as an on-going process.  For our 
work at the NIH our client principle investigators would draw data 
views from BTRIS and other sources. Interfaces to other data 
repositories could also be developed.  

7    CROWDSOURCING FOR SOFTWARE 
We would like to use crowdsourcing to cooperatively develop the 
production system just described. Crowdsourcing means to use an 
open call to outsource to an undefined community (the "crowd”) 
tasks that are traditionally performed by employees and 
contractors. It includes contests, competitions and challenges.  In 
his book about crowdsourcing Jeff Howe suggests that it 
potentially gathers the most fit with the most relevant and 
innovative ideas to perform the required task [11]. Crowdsourcing 
can yield contributions from amateurs and volunteers working in 
their spare time, and from professional experts and small 
businesses unknown to the initiating organization. Benefits of 
crowdsourcing may include (1) activation of intrinsic motivating 
incentives [12], (2) tapping a wider range of talent,  (3) more  
heterogeneous solutions,  (4) quicker solutions at no cost or low 
cost, (5) the crowd gets to feel brand-building kinship with the 
crowdsourcer and with other crowd members and (6) reward in 
the form of  shared results may be sufficient. Our idea is that we 
would be the crowdsourcer that provides detailed software design 
documentation describing a set of data visualization tools starting 
with star glyphs and that we would guide the crowdsourcing 
process in developing production-grade software modules to be 
made operational in the design concept illustrated in Figure 7.  We 
would like to use crowdsourcing in an on-going basis to 
continually develop and refine a library of data visualization and 
other computational intelligent tools to support biomedical data 
mining and knowledge discovery in an on-going basis. We 
propose starting with producing production-quality star glyph 
software and having it work with BTRIS-provided data as the first 
learning example. 

8    THE AMERICA COMPETES ACT 
It has been pointed out that crowdsourcing is not new.  The term 
was  first coined by Jeff Howe in a June 2006 Wired magazine 
article “The Rise of Crowdsourcing." Projects which made use of 
group intelligence, such as the LazyWeb or Luis von Ahn's ESP 
Game, predate the word “crowdsourcing” by manyl years. One 
thing that is new however is that it is now possible for the federal 
government to engage in crowdsourcing by virtue of the America 
Competes Act. This Act was first signed into law on August 9, 
2007.  Its purpose is "to invest in innovation through research and 
development, and to improve the competitiveness of the United 
States."  President Obama signed a revised version of the 
“COMPETES Act” in January 2011.  This version is specifically 
designed to harness America’s scientific and technological 
ingenuity and in particular, it identifies health care improvement, 
better use of information technology and new product 

development as specific objectives.  The Act gives every federal 
government department and agency the authority to conduct 
contests, competitions and challenges – methods that have 
demonstrated records of accomplishment for accelerating problem 
solving by tapping top talent and expertise.  Under the Act Federal 
agencies may outline a problem they would like solved on 
Challenge.gov.  At the time of this writing the NIH Office of the 
Director is establishing policy to ensure that NIH is compliant 
with the COMPETES Act.   Once this policy is in place we hope 
to be able to advertise the crowdsourcing initiative just 
described.   Initial announcements will be made through the NIH 
Biomedical Computing Interest Group (BCIG). To have your 
name placed on the BCIG listserver list please contact Jim DeLeo 
(first author) at e-mail address jdeleo@nih.gov.   

9     SUMMARY 
We have described our current work in applying star glyph data 
visualization methods to NIH clinical research data and suggested 
a crowdsourcing approach to develop data visualization and other 
data mining software compatible with data in the NIH BTRIS 
System. When such these methods are made available in standard, 
easy-to-use and readily-available software packages they are 
likely to become indispensible tools for gaining new insights and 
new knowledge in medicine as well as in other disciplines. 
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ABSTRACT

In this paper we describe PharmaForeCast, a new tool to improve

predictions of patient clinical outcomes based on assigning their ap-

propriate treatment subtype, which forms the basis of personalized

medicine. Our prototype allows physicians to rapidly visualize not

only the assignments of a conceptual black box algorithm for as-

signing patients to a treatment subgroup, but to also quickly assess

the uncertainty of all the individual laboratory assays and other clin-

ical information for determining the effect each of these potential

errors has in determining the treatment subtype. The importance of

this tool is providing physicians a way to effectively navigate the

large amount of laboratory and other clinical information as to en-

sure the accuracy of the final subtype assignment through human

quality control by an expert (the physician). Currently available

tools used to visualize personal medical information, such as assays

results or blood-typing, rarely allow for editing within the graphi-

cal user interface. Clustering accuracy can be significantly aided by

human interaction when data points are plotted. Furthermore, cur-

rent tools universally approach classification as a single-pass task,

which ignores the useful information that may be gained by a clin-

ician in an interactive analysis, in which which the clinician is able

to provide expert editing of questionable data to improve the accu-

racy of the final subtype. This interaction loop can be repeated mul-

tiple times over a patient’s lifetime. In this paper we describe the

need for such a tool, which allows for highly interactive manipula-

tions of personalized medical data using PharmaForeCast. Finally,

we mention future improvements to the tool that could be applied

in several subfields.
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1 INTRODUCTION

Since the very earliest attempts to apply computers to simplify-

ing and automating the process of medical diagnosis it has been

clear that one of the primary benefits of this approach would be the

machine’s ability to aggregate, compare, and act on an immeasur-

ably larger volume of data than the human mind can assimilate. A

computer can digest an entire genome’s volume of data, and more,

and return to the end user a summary of the state of an individ-

ual, condensed into a few variables and predictions. When applied

in a medical context, such dimensional reduction can be incredi-

bly powerful, and incredibly useful. [10, 5, 9, 3] It can predict the

susceptibility of a person to disease, or identify those treatment op-

tions that are more likely, or less likely, to succeed – applications of

which are at the heart of modern medicine’s push for “Personalized

Medicine”.

Such dimensional reduction is, however, not without some peril.

It is an inherently lossy process, presenting the end user with less

information than was originally available, and condensing detailed

and nuanced networks of observations into flat assessments of fact.

This is not a defect of the approach, as it is exactly the result that is

desired, however, it produces the insidious side effect that the error

characteristics of the underlying data are completely disguised. The

end user of such diagnoses is left with, effectively, two choices: to

accept the results as valid regardless of the potential for error, or to

attempt to understand and check the potential errors, which requires

addressing the full dimensionality of the problem and negates many

of the benefits of the original dimensional reduction. In reality,

most clinical applications of this process fall somewhere between

these extremes, with users attempting to address the assumed most

likely sources of error, but in the end unable to universally address

every potential error factor in every case. This process is insidi-

ously problematic. While the drive towards personalized medicine

accents the necessity to focus on the individual’s specific disease

state, rather than on the average presentation of a disease, this diffi-

culty in dealing with potential errors results in error-checking being

biased towards re-checking the most prevalent errors in “the aver-

age disease”, rather than even the average presentation of a specific

disease. As a result, measurements that are well understood to be

frequently variable or erroneous, such as blood pressure or throat

swab tests, are almost certain to receive closer or repeat attention,

whether they are a relevant factor in a diagnosis or not. A measure-

ment that is not well understood as problematic is far less likely to

be reassessed, even if it is the largest contributor to the final result.

With PharmaForeCast we propose a Visual Analytics alternative

to these options, that both automates and employs a subtle vari-

ation on the current state of the art, to produce improved results.
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Figure 1: The PharmaForeCast prototype based on PandaSNP,
a genotype editing tool, with a typical clustering result before ed-
its. Axes correspond with strength of combined signasl along the
y-direction and percentage of a base type along the x-direction.
Icon/color types refer to the three allele combination types.

By engaging an iterative diagnostic updating scheme, PharmaFore-

Cast makes certain that the human expert user is informed of the

potential errors in the factors that have the largest influence on the

diagnostic prediction, and that the human expert has certified that

the evaluation of these factors is acceptable. This differs from the

automation of the current “check the factors most likely to con-

tain errors”. Instead, by utilizing the information contained in the

dimension-reducing “black box” that produces diagnoses, we can

highlight the factors that were critical in producing the diagnosis,

and direct the human expert’s attention towards the potential errors

that are most relevant to the diagnosis. If the expert updates any of

these assessments, the process can be repeated and, even if the most

relevant diagnostic factors change for the re-diagnosis, the user can

be iteratively presented with the information necessary to critically

assess the validity of the automated diagnosis.

Our prototype for this approach operates in the domain of phar-

macogenomics. Pharmacogenomics derives predictions about an

individual’s potential drug metabolism from specific features of

their genome, and uses this information to customize prescription

dosages. The features of an individual’s genome that might influ-

ence their metabolism of any specific drug however, are myriad,

therefore significant dimensional reduction is applied in produc-

ing these predictions. Commonly, potentially numerous genomic

SNP variants are used to predict the activity of several metabolic

steps, which are used to identify a particular drug dosage. Sev-

eral steps of dimensional reduction are applied. The practitioner

attempting to apply this process is left with a suggested dosage,

and perhaps some form of confidence score regarding the correct-

ness of the score, but is left without any convenient way to assess

which of the metabolic predictions might be causing reduced con-

fidence or increased error, and without any indication of whether

any of the genotype calls might be questionable, thereby induc-

ing uncertainty. A canonical example is the prediction of warfarin

metabolism, through examination of polymorphisms in the vita-

min K epoxide reductase complex subunit 1 (VKORC1) and cy-

tochrome P450 2C9 (CYP2C9) genes[8]. Because supplying a cor-

rect warfarin dose is time-critical, applying time-consuming direct-

sequencing approaches to this genotyping need is problematic. Kim

Figure 2: Visual display of PharmaForeCast’s approach to data anal-
ysis. A strength of this visual analytic method is its assumption that
it will be working with clinicians to readdress errors or incoporate
later knowledge, while being able to work with current best clustering
and classification automated methods. Black-box classification algo-
rithms take a burden off clinicians, but at the same time PharmaFore-
Cast takes information from them on ’most vital’ data elements for
aiding users by visually emphasizing which elements actually need
to be reanalyzed.

et. al[7] approach this problem for warfarin dose optimization by

development of an “automated interpretive” application that evalu-

ates allele-specific real-time PCR data for four VKORC1 SNPs and

two CYP2C9 SNPs. These results can be produced in much less

time than the direct-sequencing approach. Neither approach how-

ever, eliminates the need for the practitioner to carefully consider

all of the possible errors in the genotyping – also a significantly

time-consuming process – before acting on the suggested dose. By

applying a PharmaForeCast technique, potential sources of error

that are not important for the projected diagnosis – for example a

SNP that has poor quality scores for its assignment, but is irrele-

vant to the metabolism at the prescribed dosage – can be eliminated

from further assay, and the practitioner’s attention focused on only

those sources of error that can affect the prediction.

2 DISCUSSION

Our prototype application of this methodology is a Visual Analyt-

ics approach to checking, and updating SNP genotype assignments

across a large number of genotypes for an individual. Because

genotype assignments are not without error, and multi-locus assays

of an individual’s genome almost ubiquitously require the type of
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dimensional reduction highlighted previously, fields that use this
data are in significant need of tools that allow rapid survey and
identification of the salient factors that require closer examination.
For pharmacogenomics, the question faced by the practitioner is
“given this individual’s genome, will this dosage be inadequate, ad-
equate, or too much?”. The decision must be reached by taking into
consideration the patient’s genotype information at anywhere from
one, to dozens, to – as the field develops – eventually hundreds of
different loci, many of which produce non-linear and conditional
contributions to the final answer. It is virtually impossible for the
practitioner to hold the complete model of these interactions in his
or her head, or to hold the complete model of the possible errors.
However, with as many as 3% of all genotype assignments requir-
ing manual curation despite adequate statistical sophistication, it is
a virtual requirement that the errors be addressed to maintain valid
results. Our tool, PharmaForeCast, informs the user of the spe-
cific genotypes that were most influential in making the decision
by providing a convenient visual survey of the quality of those as-
signments, and the extent to which each assignment affected the
dimensionally-reduced final result. If the quality in any of the crit-
ical genotypes is unacceptable, or the assignment requires correc-
tion, the user can update the assignment and reapply the prediction
to determine whether the result is the same or, if different, if any
of the critical genotypes for the new result are also questionable.
As shown in Figure 3, data points’ shapes are made grey during
reassessment if they are annotated as significant or otherwise color
coded to correspond with their respective sample groups.

We believe our tool can be expanded for use in further subfields.
There are many systems currently in use in medicine involving au-
tomated systems for clustering and classifying genetic and other
medical data, many revolving around artificial intelligence sub-
fields, such as evolutionary computation [12]. Unavoidably, these
tools have error rates, often in excess of 5% [6, 4, 11, 14, 1, 6]. Of
even greater concern is that the error rate is an average, with possi-
bly strong inconsistentcies across sets or individual trials [2]. This
means that not only are clinicians relying on incorrectly classified
or clustered data, but the misclassification is inconsistent, making
them harder to determine.

3 METHOD

The tool is meant to assist clinicians with personalized medicine
through the following process:

1. The initial analysis helps in avoiding obvious misassignments
or grossly ambiguous classifications.

2. The analysis data which will be used by the classifier for as-
signing a treatment subtype for the patient is presented vi-
sually in a way that allows the physician to drill down into
the individual assays and other clinical factors to assess the
quality of those assignments, any of which may have to be re-
peated or changed in the patient record. This is aided by the
tool’s GUI displaying the full data set as basic grouped and
scaled items, seen in Figure 1. Data points which are cate-
gorized incorrectly stand-out strongly and the interactions for
changing single or groups of points are quick and simple.

3. If a clinician has any doubts about the assignment, or if they
receive information from the patient which would preclude
them from being a member of the group to which they were
assigned, then the traits used by the algorithm to associate the
patient with the group are marked as significant.

4. The data, with marked significance, is fed back into Phar-
maForeCast where the data points of interest are highlighted
through desaturation. This allows the doctor/user the ability

Figure 3: Dimensional reduction is a classification approach. A pa-

tient’s classification (Orange) can be broken up into all of the mea-

surements required to classify them. Measurements quality is indi-

cated on the Y axis. If there are low-quality measurements on which

the classification depends, we can update those measurements and

reclassify the patient. This iterates until the patient is assigned a final

classification with no low-quality, uncurated measurements involved

in their classification.

to quickly reassess previously ambiguous data points, for ex-
ample those which may be on the border between two clusters
and had been guessed incorrectly by the clinician.

5. After alterations the fixed data is run through the classification
algorithm again to see if, with fixes, the patient now belongs
to a similar, but different group.

6. The process is reiterated, as in the loop in Figure 2, until the
clinician is satisfied, and can be resumed should new or con-
tradictory patient information become available.

This same emphasis which allows the user to view full sets of
data without being overwhelmed aids greatly during data correc-
tion. It is not practical for a user to go through thousands of in-
dividual elements which need reassignment. Our tool does allow
for groups of elements to be switched collectively, but points which
need changing may be scattered or mixed, and so changing each
one would still present a problem in even medium scale data. The
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Figure 4: Despite the outlier, at top, being able to strongly influence
the blackbox algorithm, the assay may lack the desired level of re-
liability as evidenced by the lack of clear clusters at low values on
the y-axis. This datapoint could then be excluded and the algorithm
rerun to check if the patient’s treatment subtype was sensitive to the
results on this assay. Note, the physician does not need to under-
stand the mechanics of how this datum is used by the blackbox, but
is still quite capable of performing this sensitivity analysis to under-
stand the robustness of the assignment.

’significant’ data subsets are more practical to manage. Effectively,
just as the classification put the data through dimensional reduction
for easy understanding, this visual technique reduces the dimen-
sions needed for comprehending where data corrections are needed
and how they should be altered.

The iterative nature of the tool emphasizes the real world issue
that clinicians often learn more about a patient. Beyond the initial
analysis performed patient information continues to grow. When a
new symptom or analysis comes to light it is important to be able
to integrate existing and novel information together as seamlessly
as possible, as in Figure 3. In the best case, information collection
and analysis will quickly converge to a correct diagnosis. When
this does not occur, identifying whether an error occurred in old
or current information, updating accurately, and reclassifying will
become important. Further, like many visual analytics tools, this
ability to interact with the data helps users gain a more intuitive un-
derstanding of their patient’s record, and this understanding grows
with each iteration.

4 CONCLUSION AND FUTURE WORK

As we have shown, personalized medicine can benefit from our
tool in many direct ways. With the possibility of doctors looking
through hundreds of patients’ genetic information this tool offers
an advancement in throughput and accuracy for a fast approaching
need.

We acknowledge a need for improvements to the tool in the fu-
ture. An early enhancement we would like to add is a form of track-
ing past choices. As noted by Shrinivasan et al [13] and others,
there is a large gain for users in seeing what has been explored in
the past, especially in collaborative efforts. This would apply espe-
cially in cases where multiple doctors look at a patient’sassessment
over the course of time. The ability to see what manual choices
have been made before would prevent repetitive work and help gain
insights into the paths of thought the previous analysts had.

Also, of use to doctors may be the ability to show patients, for
the purpose of fuller understanding, the link between their labora-
tory and clinical information, and the group to which they’ve been
assigned. For this purpose a more stylish version that still holds to
an uncluttered and effective information layout may be in order.

Finally, it is forseeable that doctors and researchers may wish to
compare the expressions of two patients, perhaps in a search for a
common factor in a disease or because of they are family members
where one has a disease with a known cause-location. Along this
idea, we would like to expand the program to be able to run multiple
patients’ information concurrently.
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ABSTRACT 
"!#$%&'(!)&*+,-(!,#!.&*/$*/!0$1!2/!$!3,4/-#5'!0'&1&0$'!&1.&0$+,-!
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0'&1&0$'!9/1/+&0! +/*+&19!)$*!2//1! $;$&'$2'/!1,4! #,-! +)&-+//1!(/$-*!
$1.!4/!61,4!$!9-/$+!./$'!$2,5+!+)/!$**,0&$+&,1!2/+4//1!+)/!9/1/*!
$1.!+-/$+&19!+)/!.&*/$*/7!
H,*+! )&9)! -&*6!4,%/1!$-/!1,+! 2/&19! &./1+&#&/.!,-! -/#/--/.! #,-!

0,51*/'&19:!$1.!,5-!-&*6!0'&1&0*!0,5'.!1,+!%$1$9/!+)/!;,'5%/!&#!$''!
)&9)! -&*6! 4,%/1! 4/-/! -/#/--/.! FEI7! ! K/$'+)! L1#,-%$+&,1!
8/0)1,',9(!SKL8T!),'.*!+)/!6/(! +,!&10-/$*&19!+)/!O5$'&+(!,#!0$-/!
4)&'/! ./0-/$*&19! +)/! 0,*+! ,#! 0$-/! FY:W:Z:[I7! 8)&*! 4&''! 2/!
$00,%3'&*)/.! 2(! &10-/$*&19! /##&0&/10(! $1.! &10-/$*&19! +)/! 5*/! ,#!
A'&1&0$'! B/0&*&,1! C533,-+! SABCT! +,! 3-,%5'9$+/! /;&./10/! 2$*/.!
%/.&0$'! 0$-/7! ! 8),59)+#5'! ;&*5$'&*$+&,1*! 4&''! 2/! 1/0/**$-(! +,!
*(1+)/*&>/! ABC! 4&+)! .$+$! #-,%! +)/! 3$+&/1+! $1.! +)/! 0'&1&0&$1! +,!

%$6/! 3-,3/-! %$1$9/%/1+! ,2;&,5*! $+! +)/! *$%/! +&%/! $*! .&-/0+'(!
*533,-+&19!+)/!0'&1&0$'!4,-6#',47!
</!)$;/!./;/',3/.!$! *(*+/%! +)$+! &1+/9-$+/*! +)/*/!0,%3,1/1+*!

&1+,! %$%%,9-$3)&0! *0-//1&19:! 9/1/+&0! 0,51*/'&19:! $1.! *5-9&0$'!
0'&1&0!*/++&19*7!

2 LARGE SCALE METHODS 
@(! ./;/',3&19! $1! KL8! &1#-$*+-50+5-/! #,-! &./1+&#(&19! @?A"!

0$--&/-*:! 4/! 2/'&/;/! +)/! $33-,$0)! 0$1! *0$'/! 53! /$*&'(7! !</! $'*,!
/R3/0+!+)/!$33-,$0)!0$1!4,-6!#,-!%$1(!,+)/-!.&*/$*/!$-/$*7! !</!
$'*,!2/'&/;/!),4/;/-! &+! &*!5'+&%$+/'(!1/0/**$-(! #,-! +)/*/! +,,'*! +,!
2/! &1+/-,3/-$2'/! 4&+)! ,+)/-! 0'&1&0$'! *(*+/%*7! ! N1#,-+51$+/'(:!
05--/1+! \'/0+-,1&0! K/$'+)! ?/0,-.! S\K?T! *(*+/%*! -/%$&1! .&9&+$'!
0,3&/*! ,#! 3$3/-! -/0,-.*:! 5*&19! '&++'/! ,#! +)/! 9-$3)&0$'! ,-!
,-9$1&>$+&,1$'!3,4/-!,#!$!0,%35+/-7! !"*!$1!/R$%3'/:!+,!/;$'5$+/!
+)/! -&*6! ,#! $! )/-/.&+$-(! 0,1.&+&,1:! ,1/! %5*+! ',,6! &1! +)/!
./%,9-$3)&0*!*/0+&,1:!+)/!#$%&'(!)&*+,-(!*/0+&,1:!+)/!3-,2'/%!'&*+!
$1.!+)/!'$2!-/*5'+*!*/0+&,1!+,!*//!$''!3&/0/*!,#!+)/!35>>'/7!!]/.&9-//!
;&*5$'&>$+&,1*!S^&95-/!VT!0$1!35+!$''!+)&*!.$+$!&1+,!$!*&19'/!0,)/-/1+!

! FQI:! 25+! 3/.&9-//*! $1.!
,+)/-!;&*5$'&>$+&,1*!-/%$&1!2/(,1.!+)/!0$3$2&'&+(!,#!\K?*7!!!
8)/!1//.!#,-!ABC!&*!.-&;/1!2(!+)/!-$+/!&1!4)&0)!3-,;&./-*!$-/!

2/&19! ./'59/.! 4&+)! 1/4! &1#,-%$+&,17! ! _1,4'/.9/! 9-,4*!
/R3,1/1+&$''(:!$*!*//1! &1!3$-+!2(! +)/!.-$%$+&0!-&*/! &1! +)/!15%2/-!
,#! $-+&0'/*! &1!H/.'&1/! $1.!]52H/.! F`I7! !</!.,!1,+!2/'&/;/! &+! &*!
-/$*,1$2'/!+,!/R3/0+!+)$+!3-,;&./-*!4&''!2/!$2'/!+,!6//3!53!4&+)!$''!
+)/!&1#,-%$+&,1!+)/(!1//.!+,!%$1$9/!3$+&/1+*7!!ABC!3-,;&./*!+)/!
'&6/'(!*,'5+&,17!!!
H,*+!&%3,-+$1+'(:!ABC!*),5'.!#$0&'&+$+/!+)/!2/*+!$0+&,1!$*!3$-+!

,#! 1,-%$'! 4,-6#',47! ! 8,.$(:! ABC! &*! -5.&%/1+$-(! $+! 2/*+:! 2,+)!
*O5$1./-&19! +)/! ,33,-+51&+(! +,! &10-/$*/! O5$'&+(! $1.! 3-,.50&19!
0(1&0&*%! $%,19! 3-,;&./-*! $*! +,! &+*! 5+&'&+(7! ! \K?! ;/1.,-*!
51&#,-%'(!3,&1+!,5+!$'/-+*!#,-!.-59=.-59!&1+/-$0+&,1*!$1.!$''/-9&/*!
$*!3-,,#!+)$+!+)/(!61,4!),4!+,!$00,%3'&*)!ABC7!!L1!-/$'&+(:!+)/*/!
*(*+/%*!)$;/!#$&'/.!$*!+)/(!.,!1,+!3-/*/1+!+)/!&1#,-%$+&,1!+,!+)/!
3-,;&./-!&1!$!0,%3/''&19!4$(!1,-!.,!+)/(!)/'3!+)/!0'&1&0&$1!#,'',4!
+)/!-/0,%%/1.$+&,1!4&+)&1!+)/!0,5-*/!,#!+)/&-!1,-%$'!4,-6#',47!!
L*$$0!/+!$'! &./1+&#&/.! +)$+!3-,;&./-*!#$&'! +,!$0+!,1!`E7YX!,#!.-59=
.-59!&1+/-$0+&,1!$'/-+*!$1.![[X!,#!$''/-9(!$'/-+*!FPUI7!
!
,!-./0/01-2!3/4506/7!
!
8)/! 3-,0/**! *+$-+*! 4)/1! $! 3$+&/1+! 0)/06*! &1! $1.! &*! )$1./.! $!

8$2'/+!]A!4)&0)!.&*3'$(*!,1/!O5/*+&,1!3/-!*0-//1! &1!$!0),&0/!,#!
'$195$9/*! &10'5.&19! \19'&*):! C3$1&*)! $1.! L+$'&$1! S^&95-/! PT7!!!
L1#,-%$+&,1! #-,%! 3-&,-! */**&,1*! 3-/=#&''*! +)/! $1*4/-*! +,! %,*+!
O5/*+&,1*:!4)&'/!2-$10)&19! ',9&0!%,;/*!,;/-!O5/*+&,1*! &--/'/;$1+!
+,! +)/! 3$+&/1+7! C)/! /1+/-*! -&*6! #$0+,-*:! #$%&'(! )&*+,-(:! $1.! $1!
/R+/1./.!-/;&/4!,#!*(*+/%*7!
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!
Figure 1.   A sample Hughes RiskApps patient survey 
question showing a simple interface with easy to read 
questions and options for multiple languages. 

!
"#$%! &$'#()*+$%! $,! *-)! ./01)23! 0+.4!'$5)(.! ,$0! 60)7.*! &7%&)0!

70)! +'')5+7*)(2! 0/%! 7%5! 7! ./''702! #0+%*$/*! +.! 8)%)07*)5! *-7*!
5+.#(72.!*-)!#7*+)%*!57*7!+%!7%!+%*/+*+1)!,$0'3!+%&(/5+%8!7!#)5+80))9!!
:7*+)%*! +%,$0'7*+$%! .-))*.3! ./&-! 7.! .'$4+%8! &)..7*+$%!
+%,$0'7*+$%3!70)!8)%)07*)5! ,$0!7##0$#0+7*)! +%5+1+5/7(.9! !;-)!.*7,,!
0)1+)<.! *-)! ./''702! #0+%*$/*! *$! &$%,+0'! 7&&/07&23! 7%5! '74).!
7##0$#0+7*)!&$00)&*+$%.9!!!
!

!
Figure 2. The pedigree visualization can show risk 

for a whole family. 

!;-)!&(+%+&+7%!<$04,($<!+.!67.)5!$%!7%!+%*/+*+1)!.)*!$,!*76.!*-7*!
.*70*.!<+*-!7!0)1+)<!$,!*-)!57*7!)%*)0)5!.$!,703!#0$80)..).!*-0$/8-!
*-)! &(+%+&7(! )%&$/%*)03! 7%5! )%5.! <+*-! 7((! $,! *-)! %)&)..702!
5$&/')%*7*+$%!7%5!$05)0!.-))*.!6)+%8!8)%)07*)59!!=%!*-)!0+.4!&(+%+&!
'$5/()! *-)! 8)%)*+&! &$/%.)(($0! &7%! 0)1+)<! *-)! 0)./(*.! $,! *-)! 0+.4!
'$5)(.!<+*-!*-)!#7*+)%*!*$!-)(#!5)*)0'+%)!<-7*!*-)!170+$/.!$#*+$%.!
7%5!(+4)(2!$/*&$').!70)3!7%5!/(*+'7*)(2!+,!*).*+%8!+.!7%!7##0$#0+7*)!
&$/0.)!$,!7&*+$%!>?+8!@A9!
=%!755+*+$%!*$!1+)<+%8!*-)!07<!57*73!0+.4!&7(&/(7*+$%!7(8$0+*-'.!

70)!0/%!7%5!*-)!0)./(*.!70)!5+.#(72)5!*$!*-)!&(+%+&+7%!/.+%8!7!1+./7(!
0)#0).)%*7*+$%9!B07#-.!.-$<!0)./(*.!,0$'!CDEF:DG3!7!.*7%5705!
60)7.*!&7%&)0!0+.4!7..)..')%*!7(8$0+*-'3!0/%!'/(*+#()!*+').!,$0!*-)!
.7')!,7'+(2!/.+%8!5+,,)0)%*!#707')*)0.9!CDEF:DG!+.!7(.$!0/%!,$0!
)7&-!0)()17%*!,7'+(2!')'6)03!<+*-!*-)!0+.4!$,!'/*7*+$%!.-$<%!,$0!
)7&-!+%!7!#)5+80))!5+7807'9!
B)%)*+&! *).*+%8! 0)&$'')%57*+$%.! 70)! '75)! <+*-+%! *-)! .7')!

/.)0! +%*)0,7&)! +%! <-+&-! *-)! 57*7! +.! .-$<%9! =%! 755+*+$%3! 0+.4! $,!
'/*7*+$%!+.!&$'#/*)5!,0$'!7%$*-)0!0+.4!'$5)(3!*-)!H20+75!'$5)(3!
7%5!0)./(*.!,0$'!6$*-!CDEF:DG!7%5!H20+75!70)!.-$<%!$%!7!0+.4!

$,!'/*7*+$%! .(+5)03!<-+&-! *-)! &(+%+&+7%! &7%! .)*!'7%/7((29!?7'+(2!
')'6)0.! 70)! (+.*)5! +%! $05)0! $,! (+4)(+-$$5! $,! '/*7*+$%9! ! ;-)!
<+((+%8%)..!$,!)7&-!*$!6)!*).*)5!&7%!6)!0)&$05)59!
I+,)*+')! 0+.4! $,! 60)7.*! $0! $170+7%! &7%&)0! 7%5! .)1)07(! 0+.4!

'7%78)')%*! ./88).*+$%.! 70)! .-$<%! *$! *-)! &(+%+&+7%! ,$0!'/(*+#()!
.&)%70+$.J! <+*-$/*! *).*+%8! >E/00)%*! .2%*-).+.A3! 7.! +,! *-)! #7*+)%*!
*).*)5!#$.+*+1)3!7.!+,!*-)!#7*+)%*!*).*)5!%)87*+1)3!7%5!*-)!#$#/(7*+$%!
0+.49! B7+(3! E(7/.3!HH:DG! 7%5! :DKHH! 0+.4! '$5)(! 0)./(*.! 70)!
5+.#(72)5!7.!<)((9!ELM!./88).*.!7(*)0%7*+1)!.2%50$').!+%!$05)0!$,!
(+4)(+-$$53! 7%5! .-$<.! '7%+,).*7*+$%.! $,! *-)! .)()&*)5! .2%50$')9!
L$/6()!&(+&4+%8!$%!7!.2%50$')!$#)%.!+*.!#78)!+%!*-)!GH=H!7%5!
B)%)*).*.!N)6.+*).9!
;-)!ELM!.2.*)'!-)(#.!*-)!&(+%+&+7%!,+%5!7((!'/*7*+$%!&700+)0.!62!

)%76(+%8! *-)! &(+%+&+7%! *$!1+./7((2!5$&/')%*! *-)! *).*+%8!$,! ,7'+(2!
')'6)0.9!;-)! *$$(! *-)%!.-$<.! *-)!%/'6)0! *).*)5!1)0./.!%/'6)0!
$,!(+1+%8!0)(7*+1).!78)!OP!$0!$(5)0!<+*-!7!'/*7*+$%!0+.4!$,!OQR!$0!
80)7*)09!
=%!*-)!./08+&7(!'$5/()3!*-)!&(+%+&+7%!755.!5)*7+(.!76$/*!*-)!)S7'!

7%5!&$'#()*).!&$(()&*+$%!$,!+%,$0'7*+$%!/.+%8!7%!+%*)0,7&)!*7+($0)5!
,$0!*-+.!)%&$/%*)0!>?+8!TA9!!;-)!+'')5+7*)!#7267&4!,$0!*-+.!<$04!
+.! -$<! *-)! ELM! -)(#.! *-)! &(+%+&+7%! 5)1)($#! 7%! +'#0)..+$%! 7%5!
#(7%9!!F,*)0!5+.&/..+$%!<+*-!*-)!#7*+)%*3!*-)!0)&$05!+.!,+%7(+U)5!7%5!
*-)! .$,*<70)! 8)%)07*).! 7! -+.*$02! 7%5! #-2.+&7(3! 7! ()**)0! *$! *-)!
0),)00+%8! #0$1+5)03! #7*+)%*! +%,$0'7*+$%! .-))*.! 7##0$#0+7*)! *$! *-)!
5+78%$.+.3!7%5!7!&$%.)%*!,$0'!+,!./08)02!+.!#(7%%)59!!
! !

!
Figure 3.  Clinical Decision Support guides the workflow 

through making a decision about genetic testing. 

!
G%!./6.)V/)%*!1+.+*.3!#7*-$($8+&!0)./(*.!70)!)%*)0)5!<-+&-!-)(#!
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H)5+&7(! G%&$($82! &$%./(*7*+$%A9! ! ;-)! 7##0$7&-! +.! *$! 4))#! *-)!
./08)$%!+%!(+%)!<+*-!*-)!7##0$#0+7*)!V/7(+*2!')7./0).!+%!0)7(W*+')3!
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!
Figure 4.  The data entry screen for a breast exam in the 

RiskApps surgical clinic module helps entering 
encounter-specific information. 

2.1 More Women Identified 
!
"#$%!&'(&! )'*+!,-.'%#.*!-)%! '/%#.'0'%/1! .&%!#%2.! $&-33%#(%! '*! .4!

'5,)46%! .&%! %00'$'%#$7!40! .&%! )'*+!$3'#'$! .4!5-#-(%! .&%! '#0382!40!
,-.'%#.*9!"8)!$&-33%#(%*!-)%!.4!5'#'5':%!$3'#'$'-#!;4)+1!5'#'5':%!
)%/8#/-#.!/-.-!%#.)71!-#/!5'#'5':%!/'$.-.'4#!-#/!%/'.'#(!.-*+*9!!
!

!
Table 1. Comparative time costs using the traditional 

approach versus the Hughes RiskApps approach. 

<.!.&%!=%;.4#!>%33%*3%7!?4*,'.-3!@)%-*.!A%#.%)!B%.;%%#!<,)'3!
40! CDDE! -#/!F%$%5B%)! 40! CDGD1! HI1EJK! 8#'L8%! 0-5'37! &'*.4)'%*!
;%)%!$433%$.%/!-#/!-#-37:%/9!"0! .&4*%1! .&%)%!;%)%!C1CJJ!,-.'%#.*!
;&4*%! )'*+! 40! 58.-.'4#! ;%)%! ()%-.%)! .&-#! .%#! ,%)$%#.! -#/! ;%)%!
)%0%))%/! 04)! $48#*%3'#(9! ! M&%! *7*.%5! 5-'#.-'#*! *%6%)-3!
5%$&-#'*5*! 04)! .)-$+'#(! .&4*%! '/%#.'0'%/1! '#$38/'#(!-!*,%$'-3':%/!
L8%8%!'#.%)0-$%!3'*.'#(!-33!-.!)'*+!'#/'6'/8-3*!;'.&!L8'$+!-$$%**!.4!
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,)4$%**9! ! M&'*! 3%..%)! '*! $4,'%/! .4! &%)! ,)'5-)7! $-)%! ,&7*'$'-#! -*!
;%339!!
!
!

!
Figure 5. The high-risk patient queue gives a clinic-wide 
view of which patients are at the highest risk and would 
benefit the most from testing. 

3 DOCUMENT GENERATION 
O'*+<,,*! $8))%#.37! (%#%)-.%*! 46%)! KD! /'00%)%#.! $3'#'$-3!
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!

3.1 Structured data and Standards 
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ABSTRACT 
Massive amounts of biomedical data generated by the latest 

high throughput technologies are challenging to analyze.  Visual 
Analytics (VA) tools and techniques are intended to amplify 
medical researchers’ cognitive and perceptual capabilities and 
enable them to understand complex biomedical data. In this study, 
we explore how visualization tools can facilitate the exploratory 
analysis of this data. In order to assess and evaluate the 
effectiveness and usefulness of using visualization tools to 
enhance medical analysts’ data exploration, we analyzed the use 
of Tableau and iPCA by biomedical researchers to explore 
immunological data. Our findings reveal that VA tools are 
efficient and powerful tools that can be integrated into healthcare 
systems to help health researchers get insights and generate 
knowledge from their complex medical data. 
 

KEYWORDS: iPCA, Tableau Software, Interactive Visualization. 
 

1 INTRODUCTION 
The latest high-throughput biomedical technologies used in 

flow cytometry produce massive amounts of medical data. The 
magnitude and complexity of these data are overwhelming to 
immunological researchers including immunologists and 
biologists. Analysing and extracting useful information from these 
data impose a great challenge on the medical research community. 
It is our argument that efficient and effective visualization tools 
can facilitate the exploration and analysis of complex biomedical 
data. Interactive visualizations provide biomedical researchers and 
analysts with efficient tools and techniques to amplify their 
cognitive skills and enhance their initial understanding of the data 
during the exploratory analysis process.  

Visual Analytics (VA) is defined as “the science of analytical 
reasoning facilitated by interactive visual interfaces” [5]. These 
interactive visual interfaces rely on advanced visualizations of 
data and interactive techniques to accelerate the data analysis 
process, derive insights, acquire knowledge and optimize 
decision-making [6]. The implementation of interactive 
visualization tools was introduced in various medical disciplines 
to amplify analysts’ cognitive capabilities and address the 
challenge of extracting useful information from massive datasets.  

In this study, we present a case study of immunologists and 
biologists analyzing massive and multi-dimensional datasets using 
two visualization tools: iPCA (interactive Principal Component 
Analysis) and Tableau Software. Furthermore, we demonstrate 

how the integration of real-time visualization tools can help 
biomedical researchers uncover hidden trends in complex data and 
expose data patterns that are not noticeable otherwise, and 
ultimately facilitate the exploratory data analysis process. Finally, 
we show how immunologists exploited these visualization results 
to generate valuable qualitative information and drive new 
research questions.  

 

2 TASK, MATERIALS AND DATA 

2.1 Task and Data 
In order to assess the accuracy and effectiveness of VA tools 

for medical data analysis, we used analysis immunological data as 
a case study. 

Sub-Saharan Africa has the largest HIV-infected population in 
the world [2]. The vast majority of infants born to HIV positive 
mothers are not infected themselves. However, those HIV 
Exposed but Uninfected (HEU) infants are at a high risk of 
mortality during their first year of life; they suffer severe immune 
system deficiencies and an abnormal susceptibility to infections 
and diseases [7]. The causes of this mortality and morbidity are 
unclear and are currently the subject of a biomedical research 
carried out by immunologists and biologists at the Child and 
Family Research Institute (CFRI) in Vancouver, BC. The main 
analytical goal of this research project is to understand the 
immune responses of HEU infants and link these responses to 
causes of high mortality and morbidity. 

The HEU dataset included laboratory data generated by Flow 
Cytometry Luminex high-throughput technologies at CFRI. Blood 
and tissue samples from HEU infants, HIV positive infants, and 
unexposed infants (EU) were stimulated with several infectious 
agents and fed into the Flow Cytometry device to measure infants’ 
immunological responses by focusing on cytokine levels. The 
datasets were multidimensional, heterogeneous and complex. 
They included the flow cytometry data on cytokine responses to 
infectious agents, as well as the infants’ demographics, feeding 
methods, and vaccine reactions data. 

 

2.2 The Analytic Setting:  Paired Analytics 
To focus on the accuracy and effectiveness of VA tools in 

supporting the analysis of these multidimensional biomedical 
data, rather than wasting immunologists’ time in tool training, we 
decided to follow a pair analytics protocol for collaborative visual 
analysis [8].  

In a pair analytics protocol, a visual analytic Tool Expert (TE) 
is paired with a Subject Matter Expert (SME) to conduct a 
collaborative visual analytic session organized around a well-
defined task, a dataset, and a visual analytic tool [8]. Since the TE 
lacked biomedical expertise to conduct a meaningful analysis of 
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the HEU data, and the SME lacked tool expertise to operate the 
visual analytic tool proficiently, their collaboration was required 
to make the most of the visual analytic sessions. In our case, the 
SMEs were biologists and immunologists. The TE was the main 
author of this paper. The pair analysis was structured to help 
immunologists exploit the VA tool and increase the speed, 
efficiency, and accuracy of the exploratory data analysis process 
[8]. Both experts worked together and exchanged expertise to 
understand the HEU data and assess the relevance of using two 
different visualization tools (iPCA and Tableau) for exploring 
biomedical HEU data. 

3 VISUALIZATIONS AND INSIGHTS 
Intuitive and interactive data visualizations facilitated the 

exploratory analysis of HEU data and enabled immunologists and 
biomedical researchers to analyse and interact with HEU data at 
various levels of abstractions to identify trends, patterns and 
formulate hypotheses. 

To study HEU infants’ immune system reactions to infectious 
agents, we explored HEU and EU infants’ cytokine reactions 
using two interactive visualization tools: iPCA and Tableau 
Software.  

3.1 Interactive Principal Component Analysis (iPCA) 
Interactive Principal Component Analysis (iPCA) is an 

interactive visual analysis tool developed by the Charlotte 
Visualization Centre. iPCA uses the Principal Component 
Analysis (PCA) technique to reduce high dimensional datasets 
and convert data into new meaningful representations in order to 
facilitate users analytical reasoning and expedite the data 
exploratory analysis process [3]. Since HEU datasets were 
multidimensional, we plotted the HEU data in iPCA to visualize 
the reduction of variables representing infants’ cytokine reactions 
into principal components, and to analyze the distribution and 
contribution of variables to the principal components. 

 

 
 

Figure 1. Visualization of Immunological data in iPCA Views: The 
Projection View, the Eigenvector View, the Data View and the 

Correlation View.  

Fig. 1 shows cytokine reactions to one treatment (pIC). Each 
colour represents one group (i.e. HUE or EU), and each dot 
represents the values for one patient in that group. iPCA visually 
reveals the relationship between data variables, highlights outliers 
and provides immunologists with a comprehensive overview of 
existing correlations among pairs of variables. In Fig. 1, for 
example, outliers are quickly detected on the left side (highlighted 
here by the red box). It is also evident that the first principal 

component accounts for most of the variability in this dataset 
(60.2%). The slides associated with each variable (i.e. cytokines) 
allowed the TE to quickly show SME each variable’ unique 
contribute to the principal components. In this particular 
visualization, most variables did not contribute significantly to the 
constitution of the first two principal components. One exception 
was the variable representing the cytokine IP10. Figure 2, shows 
the state of the visualization after the TE interacts with the “IP-
10” slide dropping its contribution to the principal components to 
zero (highlighted by the red box). It was visually evident the 
dramatic reorganization of the values on the scatter plot 
representing the first two principal components.  The first 
principal component, for example dropped from accounting for 
60.2% to accounting for 42.3% of the variability in the dataset, 
while the second principal component increased from 14.2 % to 
26.8%. 

 

 
Figure 2. Interaction with individual variables to visualize their 

impact on the constitution of principal components 

According to this analysis, the cytokine IP10 seemed to be a 
good candidate for further statistical analysis. To verify the 
analysis outcome, iPCA offered a matrix of correlations of pairs 
of variables. Every variable in the matrix is plotted against other 
existing variables to determine correlation coefficients (See Fig. 
3). The correlation matrix proved very useful to quickly confirm 
the independence between IP10 and all the other cytokines in 
terms of responding to pIC treatment, which is visualized by the 
absence of dark red colours (i.e. indicators of high correlation) on 
the row corresponding to IP10 (highlighted by the red box). 

 

 
Figure 3. Correlation matrix 
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In summary, immunologists were able to quickly explore the 
HEU data and interactively identify which variables were more 
and less relevant for further statistical analyses. iPCA enabled 
immunologists to interact with the HEU data in real-time. Each 
time they changed a data item in one view; the change was 
automatically reflected in other views, giving immunologists the 
ability to understand data patterns and characteristics. By 
interacting with data, immunologists understood the influence and 
intuitively perceived the weight of separate variables on the 
constitution of the principal components. iPCA also allowed 
immunologists to visually detect and investigate outliers (Fig. 1) 
and their corresponding data items by eliminating an outlier from 
the data and observing its effect on the overall data visualization. 

 

3.2 Tableau Software 
Another visualization tool was used to visualize the HEU 

datasets: Tableau Software. Tableau is a commercial tool used for 
data exploration; it uses interactive visual dashboards to represent 
data and facilitate the exploratory data analysis process [1]. In 
order to compare the HEU, HIV and EU infants’ cytokine 
reactions to infectious agents, we plotted and visually compared 
infants’ IP10 cytokine reactions to each one of the 6 types of 
stimulations: CpG, pIC, R848, LPS, PG, and PAM, as well as the 
unstimulated control: Unstim.  

The outcome of the graph, as shown in Fig. 4, depicts the 
infants’ average cytokine reactions. Tableau represents cytokine 
reactions with different colors and saturations to reveal trends and 
show patterns in data. These patterns reflect variation across 
infants’ groups, indicating that cytokine reactions are cohort-
specific and vary between HIV unexposed and exposed infants. 
Tableau enables immunologists to drill down the HEU datasets 
and get further individual detailed information. Each bar of the 
graph represents all types of cytokine reactions per infant. The 
value of each cytokine reaction dictates the height of the bar. The 
shape of the bars represents a powerful visualization that provides 
immunologists with a comprehensive picture of the difference 
among HEU, HIV and EU cytokine reactions. 

 

 
Figure 4. EU, HEU, and HIV infants’ cytokine reactions to 

stimulations. [9] 

The interactivity aspect of the HEU Tableau visualization 
supports immunologists’ visual data exploration; it enables 
immunologists to hover the mouse over any particular patient and 
get on-demand detailed accurate statistical information about the 
infant’s cytokine reactions to each of the stimulations. The 
observed variations in cytokine reactions proved the 
immunologists’ hypothesis stating that HIV exposed but 

uninfected infants experience less immune defense against 
infectious agents compared to unexposed infants. 

Immunologists were able to observe how HEU infants reacted 
differently to the majority of the stimulations, indicating that HEU 
infants’ immune system differ from unexposed infants’ immune 
system in terms of reacting to invading infectious agents and 
susceptibility to disease. 

4 DISCUSSION 
Visual Analytics tools and techniques amplify biomedical 

analysts’ cognitive and perceptual skills in order to observe and 
comprehend complex medical data, derive scientific insights and 
acquire knowledge to accelerate health discoveries [8]. Through 
real-time interactive visualization, Visual Analytics empowers 
biomedical analysts with the ability to reason and make sense of 
data under investigation.  

Immunologists expressed their design and features preferences 
when interacting with the iPCA and Tableau visualization tools, 
which could be pivotal to inform the redesign of current tools to 
better fit the exploratory data analysis process. On one hand, 
immunologists pointed out flaws when interacting with Tableau. 
Immunologists were mainly concerned with the lack of the 
correlation option in Tableau, a feature that is perceived to be 
beneficial to the data exploration process. On the other hand, 
during the pair analysis session, the SMEs reported difficulties 
when interacting with iPCA. Something expected since iPCA is 
an experimental VA tool. Firstly, iPCA needs filtering; selecting 
and deleting groups as form of filtering is a cumbersome process. 
Secondly, SMEs couldn’t directly access raw data from iPCA as 
the tool does not offer this functionality. The TE had to open a 
spreadsheet with the raw values on a second screen in order to 
have simultaneous access to the raw data. Thirdly, iPCA 
automatically assigned colours to groups and did not offer options 
for colour customizing to make differences between groups more 
visually salient.  Fourthly, iPCA did not offer quantitative 
information about the exact contribution of each variable to each 
principal component. This information needed to be deduced by 
interacting with every single slide. A table with values may prove 
to be a better, faster, and more precise way to reach similar 
conclusions. Finally, iPCA did not provide features to export data. 
Since principal component analysis is an intermediary process in 
the statistical analysis process of multidimensional data, iPCA 
should enable users to export data to a statistical package to 
determine whether there is any statistical difference among the 
groups.  

iPCA and Tableau encounter few pitfalls that constraint and 
limit their applications to our current HEU data. However, our 
preliminary findings indicate that VA tools support biomedical 
data exploration and knowledge dissemination. iPCA and Tableau 
visualization examples validate the relevance of using efficient 
VA tools and techniques for healthcare applications. iPCA and 
Tableau visualizations reveal important features about the HEU 
dataset and illustrate the useful application of Visual Analytics for 
data exploratory analysis. Furthermore, VA promoted 
collaboration and dissemination of information among health 
professionals, which is vital for the decision-making process [4]. 
Tableau visualization software enabled biomedical researchers to 
disseminate, share and communicate analysis results with a 
variety of audience through the creation of dashboards. Produced 
dashboards can be published to communicate information, 
interactively explore results and disseminate knowledge to 
colleagues as well as patients to ease dialogue with them.  This is 
an efficient way to share knowledge and promote collaborative 
analytical reasoning. 
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Based on the visualization of the HEU data, VA provided 
powerful interactive visualizations needed to assist immunologists 
and medical researchers in data exploration as well as to generate 
hypotheses and test these hypotheses. VA enabled immunologists 
to engage and interact with the high dimensional HEU data, 
discover details and relationships among data variables, recognize 
relevant patterns, identify data clusters and outliers, and ultimately 
advance their research. Immunologists’ experience motivates 
other health professionals and promotes the use of VA tools and 
techniques to explore complex data and to integrate powerful and 
effective visualization software in clinical practices. 

 

5 CONCLUSION  
High throughput flow cytometry technology provides 

immunologists with complex and multifaceted data. Exploring 
and examining massive and unstructured medical data exceed the 
ability of health professionals to synthesize meaningful 
information. Interactive and dynamic graphical presentations of 
data empower immunologists with a better perception of the HIV 
disease progression and a good understanding of the HEU infants’ 
immunodeficiency. Visual Analytics uses interactive and intuitive 
visualizations to help medical researchers determine hypotheses, 
formulate research questions and conduct exploratory data 
analysis efficiently. Effective visualization of the HEU data 
represents a fundamental step in the data analysis process that can 
guide relevant medical discoveries and gain insights into valuable 
medical information. Understanding complex HEU data and 
drawing valid conclusions enable immunologists to identify the 
health determinants of HEU infants and eventually make decisive 
public health interventions to reduce HEU infants’ sufferings and 
bring changes to the lives of over 300,000 HEU infants born 
annually [7].  

We identified emerging challenges with iPCA and Tableau that 
could provide opportunities to improve the current version of the 
tools or design new tools that accommodate the needs of 
biomedical researchers and analysts. Further research into the 
potential implementation of visualization software for medical 
applications will determine how these visualizations can 
significantly affect the way analyst look at their data and guide 
effective integration of VA techniques and tools in various health 
care systems to help medical researchers generate knowledge and 
gain insights.  
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ABSTRACT
Accurate diagnosis and treatment of biofilm infections require iden-
tification of the pathogenic organism(s) as well as determining the
progress of the disease. Current tools in clinical use, including cul-
turing and PCR tests, are extremely useful for identifying organ-
isms, but are destructive in nature – resulting in the loss of im-
portant information regarding biofilm architecture and state. Im-
proving clinical understanding of these, often treatment-resistant,
infections is of great importance, and new non-destructive imaging-
based tools must be developed in order to gather crucial information
regarding disease.
Here we present new software, ProkaryMetrics, designed to

take advantage of available microscopy imaging modalities, pro-
viding a unique platform for 3D imaging and analysis of biofilm
samples. We demonstrate the software capabilities by analysis
of murine tissue biopsy samples containing uropathogenic Es-
cherichia coli biofilms: wild type UTI89 and UTI89!kpsF strains.
Using ProkaryMetrics, we establish significant architectural differ-
ences with qualitative 3D visualizations as well as quantitative mea-
surements including volumetric biofilm size, bacterial counts, com-
munity density, orientations, and lengths.

Index Terms: J.3 [Computer Applications]: Life and Medi-
cal Science—Biology and genetics; D.2.11 [Software]: Software
Architectures—Domain-specific architectures

1 INTRODUCTION
Proper treatment of an infectious disease requires the identification
of the causative agent and state of the disease, as well as the sus-
ceptibility of the organism to standard treatment. While culture-
based techniques remain the gold standard for identification of bac-
terial and fungal pathogens, diagnostically significant features of
an infection also include aspects of the current activity and state of
the pathogen, in addition to its simple identity as available through
culturing [1]. There is increasing recognition that the state infor-
mation lost through the culturing process can be critical for prop-
erly identifying causative agents and appropriate treatment. How-
ever, there is a dearth of quantitative approaches to acquiring state-
related measures such as pathogen morphology, biofilm/community
organization, and cellular localization from pathology specimens.
The current approaches rely either on automated applications of
computer-vision, or on manual applications of expert-user visual
assessments from (typically) serial microscopy/histology sections.
Unfortunately, there are significant impediments to both of these
approaches, as, at the diagnostic endpoint there is insufficient ho-
mogeneity across either samples or image-acquisition systems for

∗e-mail: dabdoub.2@osu.edu
†e-mail:ray.29@osu.edu

any automated system to be universally, or even widely success-
ful, and simultaneously there is sufficient variation in clinical-user
expertise that evaluations from different experts are not quantita-
tively comparable. Until significantly more sophisticated imaging
capabilities are routinely available to endpoint clinical caregivers,
any successful approach to integrating quantitative assessments of
pathogen state information into treatment decisions, will require
systems that can extract quantitatively comparable data from nu-
merous disparate imaging systems and imaging modalities, without
requiring more than a lay expertise in applying or adapting the com-
putational approach. Explicitly, we propose that enabling a rural
physician with a white-light microscope to, with human interven-
tion, make quantitatively comparable measurements of clinically
relevant variables, to those produced by a research laboratory with
a scanning confocal instrument, is far more clinically useful than
developing an automated approach for the confocal data alone.
To this end, we introduce ProkaryMetrics, a Visual Analytics

tool for extracting quantitative measures of pathogen community
morphology, density and architecture from microscopy images.
ProkaryMetrics leverages straightforward computer vision and vol-
ume segmentation/visualization approaches that can be applied on
commodity hardware, to provide a guided interface through which
a human expert can rapidly annotate salient pathogen/community
features for quantitative analysis. By applying algorithmic volume
segmentation/visualization as a guide, rather than as a direct pro-
ducer of quantitative results, ProkaryMetrics can be applied to in-
put data across a wide range of imaging modalities, resolutions,
histological approaches, and ultimately absolute quality, without
requiring modification of the algorithm, or adaptation of numer-
ous parameters. By guiding the user to make specific quantita-
tive measures, rather than relying on subjective expert assessments,
ProkaryMetrics can be applied by users with widely varying exper-
tise levels, and still produce quantitatively comparable results.
In this manuscript we validate ProkaryMetrics for quantitating

two pathogen state variables of known clinical importance. The
first is the morphology of the organism. The ability of the mi-
croorganism to alter its size, by regulation of cell division, provides
advantages during disease. “Morphological plasticity” is a well-
known survival strategy for fungal pathogens. Its utility for bacte-
rial pathogens is becoming evident through studies of persistence
of uropathogenic Escherichia coli [6] (UPEC), and Mycobacterium
tuberculosis [4]. In addition to being resistant to the host immune
response, filamentous morphotypes of organisms are typically re-
sistant to antibiotics even when their non-filamentous progeny are
sensitive. This inherent resistance to killing underscores the im-
portance of determining the prevalence of the filamentous morpho-
types in infected samples, as successful treatment regimens must
be adapted to eliminate these tenacious survivors. The second is
the morphology and architecture (in terms of coherent organization)
of the pathogenic community. While only gaining widespread ac-
ceptance in the past decade, pathogen community architecture, and
internal and external organization, have become well understood as
directly modulating the effect and effectiveness of treatments for
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Figure 1: Optical sections of UPEC infected murine bladder biopsy.
(A) The green channel of a UTI89 wild type IBC. (B) The same IBC
reimaged with a lower-resolution, 3-color modality.

infection.
By leading the user to recognize the general structure and organi-

zation of a pathogenic community – a task that can be accomplished
with a generalized visualization algorithm that is adequate for de-
scriptive rather than quantitative purposes – and enabling the user
to then make specific quantifiable assessments and measures within
this generalized presentation, ProkaryMetrics provides a mecha-
nism for quantitation of these population-state traits that can be
consistently applied with existing technology in typical clinical set-
tings. Our results demonstrate that this approach is adequate to
differentiate uropathogenic E. coli morphotypes and strains, and to
extract quantitatively comparable assessments of community state
variables, using both state-of-the-art research, and typical clinical
microscopy samples.

2 SOFTWARE DESIGN
The guiding requirement for ProkaryMetrics has been, and con-
tinues to be, that the system enable end-user practitioners, with-
out programming experience, and with varying imaging modali-
ties at their disposal, to make quantitatively similar assessments
of pathogen/community state traits. As such, the system presup-
poses nothing more than that the user can acquire one or more digi-
tal images of the infected tissue, at sufficient resolution and quality
that the user can differentiate individual members of the community
by visual inspection. Simple volume segmentation algorithms, and
volume visualization approaches enable the user to interactively ex-
plore and annotate the pathogen population within the images, with
as much dimensional detail as is available in the images themselves.
These algorithms and approaches are required only to provide guid-
ance and support for the user’s identification of pathogen features,
and to quantitatively report the identifications. They are at no point
required to automatically determine quantitative features without
user guidance.
While this assisted-manual-analysis methodology requires user

interaction for every diagnostic analysis, we propose that this is en-
tirely appropriate for clinical applications. Not only does this facil-
itate timely analysis of samples that are not amenable to automated
approaches, it is a practical requirement that any automated clini-
cal diagnostic based on data with quality as variable as microscopy
imaging, must be confirmed by inspection by a human expert. Since
such inspection is necessarily visual, it is no impediment that our
ProkaryMetrics approach starts with this process.

3 SOFTWARE IMPLEMENTATION
ProkaryMetrics is written entirely in Python, relying on the Visual-
ization Toolkit (VTK) [8] to enable visualization of and interaction
with volumetric data. Users begin by loading volumetric image
data, typically as a series of single-channel 2-dimensional image
slices of the sample to be studied. This data is first smoothed using
a Gaussian filter, and then isosurfaced with a user-modifiable target

Figure 2: No single isosurface value is appropriate for automated
analysis. However, a human assisted analysis of a range of isosur-
faces, as shown here, produces nearly identical results for both data
sets.

pixel intensity value. This volumetric surface rendering is displayed
in the visualization window allowing the user to manipulate and ex-
plore the data in 3D. The system provides a cursor controlled by the
mouse that attaches itself to the nearest rendered surface through
ray tracing. In this manner, the user can simply click on a surface
outlining a bacterium to place a spherical marker object. One or
more markers can then be recorded as representing a bacterium.

4 ANALYSIS
In order to allow comparison between samples, ProkaryMetrics
supplies a suite of numeric and statistical tools for investigating
the mathematical properties of the biofilms. Using the Khachiyan
method [7] for calculating a bounding ellipsoid E ⊆Rn for a set of
m points, users are enabled to estimate the volume of space occu-
pied by the biofilm under investigation. Furthermore, assuming a
standard width and depth for the bacteria, and the length provided
by the user, we can estimate the total volume occupied by the sum
of the individuals. Combined with the ratio of the two volumes we
can present a quantitative picture of the size, shape, and relative
packing density of the bacterial community (see Figure 3).
Using the main axis vector of each bacterium, we calculate its

scalar projection in the direction of each of the orthonormal basis
vectors in R3. Gathering this information for all of the recorded
bacteria, we can compile statistics on the overall layout and ori-
entations of the bacteria within a community. We use these three
projections to set the RGB components of the diffuse color of the
corresponding bacterium. The resulting visual representation (Fig-
ure 4) provides a clear indication of the general orientation trends
of the community organization, as well as a means to compare vi-
sually between different samples.
Finally, using the midpoint of each bacterium, we borrow a tech-

nique from the field of data mining to calculate the average inter-
point Euclidean distance (Equation 1), giving another measure of
bacterial community packing and another means to compare be-
tween communities.

d(x1,x2) =

√

√

√

√

m

!
j=1

(xi j−x2 j)2 (1)

5 RESULTS
We have applied ProkaryMetrics to the visualization and analysis of
UPEC, the major causative agent of urinary tract infections (UTIs).
UPEC causes both acute and recurring (mainly in women) UTIs,
and results in billions of dollars in medical costs and lost produc-
tivity annually [5]. These infections are particularly difficult to
treat because UPEC has evolved highly effective means for evad-
ing host defenses, as well as medical treatment. The major com-
ponents of their evasion strategy centers on intracellular invasion of
the superficial epithelial cells of the host bladder and morphological
change by filamentation. During filamentation, bacteria continue to
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Figure 3: Minimum volume bounding ellipsoids calculated for the
user-marked bacteria in (A) a wild type UTI89 IBC and (B) a cap-
sule mutant (UTI89!kpsF) IBC. The wild type fills a volume of space
approximately 1.95x103µm3 and is nearly perfectly circular in the x
and y dimensions, making it an oblate spheroid. The kpsF mutant is
much larger, occupying a volume of 3.87x104µm3, with a clear bias in
one dimension.

grow but are unable to complete the process of division, produc-
ing a long strand of conjoined bacteria up to approximately 70µm
[5]. Establishment of intracellular bacterial communities (IBCs) al-
lows UPEC to avoid the hostile environment of the bladder until
the late stages of infection when the host cells begin to porate and
apoptose[5]. At this point, the bacteria are exposed and filaments
are resistant to neutrophil and macrophage killing, as well as an-
tibiotic treatment [5]. Additionally, the organism traverses distinct
stages of development during the infection cycle, three of which are
specific to biofilm establishment and growth, and during which the
changes in morphology occur [5].
In order to highlight the capabilities of ProkaryMetrics, we fo-

cus on two UPEC data sets, each containing a single IBC and at
least 100 individual bacteria. The first data set is of the wild type
UTI89 (a clinical isolate), and the second is a mutant of UTI89 with
a defect in the production of capsular polysaccharides, specifically
the kpsF gene. This capsule mutant is known to produce visually
distinct IBCs in size, shape, cohesion, and apparent early onset of
morphological change. As with other mutants, viewers could visu-
ally comprehend the differences as compared to the wild type, but
were limited to vague qualitative descriptions.
In Figure 3 we have used ProkaryMetrics to estimate the volume

of space occupied by the mass of each IBC, wild type and cap-
sule mutant. By visual inspection, the !kpsF mutant IBC is clearly
much larger and less regular in diameter. Fitting an ellipsoid to the
data, as is seen in the Figure, we calculate the wild type fills a vol-
ume of 1.95x103µm3 and, within tolerance, fits the category of an
oblate spheroid (two of the radii are equal). The !kpsF mutant fits
with the visual inspection and has occupies a much larger volume
of space of 3.87x104µm3.
The question of orientation is an interesting one, and certainly

important when regarding biofilms. In fact, it is their structure as

a community and the spatial heterogeneity of the individuals that
contributes greatly to their role as a common cause of persistent
infection and their ability to resist treatment [2]. However, obtain-
ing such important information is impossible with destructive tech-
niques such as PCR. As we described in Section 4, the orientation
of the main axis vector running along the length of each bacterium
is compared to the three orthonormal basis vectors inR3. In Figure
4, we have used the three orientation calculations to fill the RGB
components of the color for each bacterium. ProkaryMetrics cur-
rently provides three different, user selectable, coloring schemes,
and Figure 4 displays the orientation to color mapping: x→blue,
y→green, z→red (only bacilli are colored by orientation). In both
data sets the bacteria are nearly perfectly aligned with the plane of
the image, indicated by the general lack of red in the bacilli. Addi-
tionally, with this visualization, it is immediately obvious that the
!kpsF mutant is largely dominated by orientation relative to the
y-axis (Figure 4B is rotated 90◦).

Figure 4: Visual representation of the orientation of the main axis of
each bacterium with respect to the three orthonormal basis vectors
in R3. The xyz components of the orientation are represented in the
RGB channels of the image: x→blue, y→green, z→red. Filaments
and coccoid bacteria are left in their original color. (A) The UTI89 w.t.
IBC is clearly split into two fairly distinct populations with one having
the main component of its orientation in the y (green) axis, the other
with the main component in the x (blue) axis. (B) The IBC formed by
the !kpsF mutant is dominated by bacteria oriented along the y axis,
indicated by the predominance of green. The image is rotated such
that the y-axis is presented horizontally.

While Figures 3 and 4 provide important semi-quantitative anal-
ysis regarding overall biofilm organization and architecture, math-
ematical and statistical comparisons of architectural characteristics
are necessary to establish quantitative descriptors that can be used
to prove key differences. Table 1 gives a summary comparison of
such data, as well as additional information that is not provided by
the previous visual representations. Case-in-point, Figure 5 estab-
lishes statistical proof of the obvious qualitative differences visible
in the orientation visualization in Figure 4. As we would expect,
the bacteria in both samples exhibit almost no orientation change
in the plane of the image (z-axis). However, both the x-axis and
y-axis orientation data show significant differences, with the wild
type strain exhibiting similar orientation distribution in both, while
the !kpsF strain is dominated by orientation difference in the y-
axis (as we expected from Figure 4B by the majority of green-hued
bacteria).
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Figure 5: Quantitative representation of the orientations and lengths
of the bacteria within the w.t. and !kpsF UTI89 IBCs. The relative ori-
entations are calculated as the projection of each dimensional com-
ponent on its respective axis. In both, as noted in Figure 4, the rela-
tive orientation of the bacteria with respect to the z-axis is nearly flat.
Both the x and y-axis projections, however, show significant differ-
ences, as do the overall bacterial lengths between the two samples.
(*) 2-tailed Mann-Whitney U test, p < 0.0001 (**) unpaired 2-tailed
Student’s t-test, p < 0.0001. Finally, the gray barplots in each graph
represent the data gathered from the lower quality data set seen in
Figures 1B and 2. Despite the loss of information, we were able to
achieve nearly identical quantitative results with ProkaryMetrics.

Quantifier UTI89 w.t. UTI89!kpsF
Count 120 161

Length (µm)

IBC Volume (µm3) 1949 38660

IBC Diameter (µm) 21.6 32.0
19.6 93.8
3.31 12.9

Volume Ratio 0.58 0.32

Orientation (0.0-1.0)
IB Distance (µm): 15.7 62.5

Table 1: This table summarizes the quantitative descriptors we have
developed for architectural comparisons of biofilm infections. The
volume ratio is the total volume of bacteria to the IBC volume. The
orientation histograms are colored green, blue, pink for the x,y,z ori-
entations respectively.

6 CONCLUSION
It is becoming clear that in many cases, current methods for clinical
investigation of biofilm infections are either insufficient or inac-

curate due to the amount of time required or their destructive na-
ture. An integral aspect of the nature of biofilms is their overall
architecture as well as the arrangement of the individual pathogens.
Indeed, in UPEC distinct architectural and morphological changes
occur through the three stages of its intracellular growth cycle [5].
Understanding and calculating these various properties in a quan-
titative manner can be important for identification of disease state
and potential susceptibility of an infectious organism. A non de-
structive 3Dmicroscopy-based tool is ideal for meeting these needs.
Here we present new software, ProkaryMetrics, as a tool to fit these
requirements, providing 3D visualization and qualitative, as well
as quantitative, analyses for user-assisted identification of bacteria
from volumetric microscopy data.
In order to demonstrate the utility of the software, we have ap-

plied ProkaryMetrics to the visualization and analysis of a model
organism that is recognized as the causative agent of most urinary
tract infections: UPEC. As an infectious organism, it prefers intra-
cellular existence during the majority of its lifecycle. While intra-
cellular, it forms biofilm-like structures (IBCs) that are necessary
for pathogenesis [5]. Applying the software to an IBC of wild type
UTI89 and the UTI89!kpsF mutant, we have established signifi-
cant qualitative and quantitative differences between them in over-
all architecture and individual characteristics including IBC volume
and shape, as well as aggregate and specific orientation and length
parameters. While the software was developed with UPEC in mind,
it is generalizable and easily modified to handle any sort of organ-
ism. Currently, in addition to UPEC analysis, we are generating
analyses in collaboration with researchers studying non-typeable
Haemophilus influenzae. Furthermore, we are investigating com-
putational image analysis techniques for partially automated pro-
cessing of microscopy data to aid the user in identification [3].
Developing such algorithms, descriptors, and objective analyses

is necessary for accurate identification and comparison of clinical
biofilm samples in all stages of infection. Such non-destructive
imaging analyses will provide rapid and important guidance for
clinicians and improve the suite of tools available for disease as-
sessment.
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ABSTRACT 
Scientists of all disciplines work in both the spatial and non-
spatial realm, and require visualization of data early in the process 
of discovery.  Visualization of multi-dimensional human trauma 
data greatly enhances the communication and examination of data 
for analysis.  Translating medical coding into pictures enables 
analysts to examine visual data to spot patterns, trends, outliers, 
and to generally gain an increased understanding.  A graphical 
tool named the Visual Anatomical Injury Descriptor (Visual AID) 
enables individuals to illustrate injury onto an anatomical figure 
and perform discovery operations by inspecting injury patterns 
using composite information. 
 
KEYWORDS: Injury analysis, abbreviated injury scale, injury 
scoring, wounds, trauma, and injury  
 
INDEX TERMS: I.3.2 [Computer Graphics]: Graphics Systems—
Stand-alone systems; K.8.1 [Personal Computing]: Application 
Packages — Graphics 

1 INTRODUCTION 
Every branch of science needs to observe its unique phenomena 
and each has its own specialized techniques for measuring and 
collecting representative data.  Many observed phenomena have a 
meaningful, intrinsic spatial component.  The spatial components 
are often coupled to greater amounts of non-spatial components 
for information discovery.  To fully observe these, one needs the 
subject matter expertise and instruments to measure and collect 
data as well as the tools to visualize them.   

Visualizations often produce appealing images that attract 
readers to accompanying text in proximity.  However, in scientific 
disciplines that work in both the spatial and non-spatial realm, 
visualization of data is useful very early in the process of 
discovery.  Translating numbers into pictures enables analysts to 
examine visual data to spot patterns, trends, outliers, and to 
generally gain an increased understanding.  Data and analysis are 
communicated more efficiently and effectively to a broader 
audience through the use of illustration. 

Visualization of multi-dimensional human injury data greatly 
enhances the communication and examination of trauma data for 
analysis.  A graphical tool that allows individuals to illustrate 
injury onto an anatomical figure has been constructed to support 
this need.  This tool is the Visual Anatomical Injury Descriptor 
(Visual AID). 

 
 

 

2 OVERVIEW 
Visual AID is a computer graphics tool developed by the U.S. 
Army Research Laboratory to improve injury visualization and 
effectively communicate trauma described by medical or 
simulated data.  Data visualization in Visual AID uses novel 
techniques to represent the authentic relationships of source injury 
data.  Injury visualization is meant to communicate particular 
insight and knowledge that is evident in the underlying data.  
There are two main purposes for using Visual AID.  The first is to 
create visuals that illustrate known injuries for the purposes of 
presentation.  The second is to create visuals to aid in analysis and 
data examination of the previously unknown. This allows the 
analyst to facilitate discovery and identify trends or relationships 
of note.   

2.1 Background 
Visual AID was developed following the success of several three-
dimensional human trauma images that were created by hand.  
These images received acclaim from the community and 
confirmed the value of high-resolution anatomical depictions.  
The success of these images was due to their visual portrayal in 
the spatial domain and the ease with which they could be 
understood.  Previously, images used for injury description 
consisted of the skeletal structure with a body outline, on which 
injuries were manually marked with red dots. 

The success of the initial illustrations prompted an immediate 
demand to provide such an improved visualization capability to a 
wider audience.  Generation of the new illustrations required 
three-dimensional modeling expertise and significant time for 
construction. This process and the complexity and cost of the 
graphics development environment were a significant technical 
burden to the end users.   A general-purpose tool that uses CAD 
geometry in a controlled and limited manner was the preferred 
option.  

2.2 Application 
Visual AID is a powerful, adaptable, and user-friendly application 
that enables the efficient and effective communication of trauma 
data.  Its capabilities are driven by user input described either by 
named anatomical locations or by a standard anatomical-based 
injury classification system.  The user can enter collections of 
patient records and the tool will perform frequency analysis across 
body regions and types of anatomical structures. Visual AID 
creates illustrations in real-time onto a reference anatomical 
figure, providing a quick and easy technique for describing trauma 
data for analysis and information reporting.  

Visual AID is a specialized tool for the non-3D modeler that 
replaces a complex and tedious process that required expert 
knowledge of 3D modeling and visual effects.  Analysts with 
medical records or simulated injury data are using the tool to 
readily create detailed illustrations.  Certified injury scorers are 
using the tool to aid in coding and in the validation of coded 
results.  Medical and injury scoring educators can use the tool to 
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communicate the significance of trauma and teach injury 
classification. 

3 INJURY CLASSIFICATION 
Anatomical-based injury classification systems describe the 
impact of an injury in terms of the extent of tissue damage and 
generally define severity in terms of threat-to-life.  Developed for 
both patient triage for medical emergencies and as a predictor in 
evaluating the impact of services or systems on patient survival, 
these indices are currently being used to characterize survivability 
of personnel in civilian and military scenarios.  Injury type and 
severity classification is critical for the evaluation of systems that 
have requirements for personnel protection or mitigation of injury.  

Visual AID integrates the current version of the Abbreviated 
Injury Scale (AIS), the standard lexicon for coding individual 
anatomical injuries that includes a consensus-derived estimate of 
severity [1]. The AIS is the most widely used anatomical-based 
injury classification system for characterizing personnel trauma.  
This scoring system was introduced in 1971 and its current 
version is AIS-2005 update 2008.  This version contains 
approximately 2000 injury descriptors.   The AIS was designed to 
distinguish between types of trauma of clinical importance as well 
as types of trauma of interest to system designers and research 
engineers.   It is a valuable tool in the scientific study of the 
epidemiology of trauma and trauma outcomes.  It is used by the 
government, academia, and industry for vehicle blast test 
evaluation, vehicle crash investigation, clinical trauma research, 
and is applied directly to records in trauma registries.  

AIS-2005 is the culmination of the collaborative efforts of 
many individuals from different disciplines, organizations and 
nations.  It is a major update of AIS that expands the number and 
sophistication of injury descriptors, uses more modern 
nomenclature, and captures subtle variations in injury.  The AIS 
classifies injuries across all body regions and types using a time 
independent code.  It considers only the injury and not its 
consequences, with a few exceptions that include blood loss and 
loss-of-consciousness.  Hence, time dependent complications, 
such as infection, are not classified.   

AIS-2005 codes consist of a six-digit injury descriptor, which is 
unique for each injury description, followed by a single-digit 
severity score.  A severity score is assigned to each injury 
descriptor, using a six-point ordinal scale with levels that range 
from 1 (relatively minor) to 6 (maximal or virtually unsurvivable) 
(see Figure 1).  This severity score is based on, but not limited to, 
several components: threat-to-life, hospitalization requirement, 
treatment complexity, treatment cost, treatment duration, 
permanent impairment, and quality-of-life.  The scale of the 
severity score is not linear, in the sense that the difference 
between a severity of 1 and 2, is not equivalent to the difference 
between a 3 and 4.   Therefore, it is improper to average AIS 
severities. 

A full AIS code for a given injury has seven numerals.  For 
example, the code 440606.3 represents a solitary diaphragm 
laceration less then or equal to 10 cm in length.  The first 4 
indicates thorax as the body region, the 4 in the second position 
indicates an organ; the next two digits are context specific to the 
first two, where the 06 in places three and four indicate 
diaphragm; the next two digits are context-specific to the first 
four, where the 06 in the fifth and sixth positions, indicates a 
laceration less then or equal to 10 cm in length.  The 3 in the final 
position is the severity score and specifies a serious injury. 

4 CAPABILITIES 
Visual AID is used to perform injury analysis based on 
information from patient medical records or as a result of 
modeling and simulation.  Several different types of injury 
analysis can be performed, including tissue damage analysis, 
which uses injury data with limited resolution, injury severity 
analysis, which uses higher resolution information to examine 
single or multiple casualties, and injury frequency analysis, which 
examines injury relationships in multiple casualties for a 
collection of trauma-causing events.  
 

AIS Severity Injury Level 

1 Minor 

2 Moderate 

3 Serious 

4 Severe 

5 Critical 

6 Maximal 
 

Figure 1. AIS Severity Scale 

4.1 Tissue Damage Analysis 
Injury type and severity classification is a time-consuming effort 
that requires specialized, trained personnel.  In support of limited 
or preliminary injury descriptions, Visual AID can be used to 
visually identify damage to specific anatomical structures without 
specifying the nature of the injury and severity.  It uses the color 
blue as a single severity-independent color to describe damage on 
visual anatomical depictions.  This allows trauma data to be 
reported rapidly to data consumers in the spatial realm while using 
gross descriptions of the non-spatial elements.  These types of 
images are typically used when patient injury details contain only 
the specific anatomical structures damaged and lack the nature of 
the injury and severity.  This occurs when the necessary details 
are not available or have not been finalized.  An example use case 
is when autopsy cases have not been finalized and only 
preliminary information is available. 

The images in Figure 2 are examples of tissue-damage injury 
illustrations.  Cross-hatching is used to indicate complete tissue 
loss.  Highlighting of body structures is used to indicate an injury 
to that structure.   

 

 
Figure 2. Tissue Damage Analysis Illustrations 
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4.2 Injury Severity Analysis 
Given injury type and severity classification, Visual AID can be 
used to visually illustrate damage to specific anatomical 
structures.  Visual AID creates visual anatomical depictions using 
a color palette representing the six AIS severity levels shown in 
Figure 1.  This allows trauma data to be reported in the spatial and 
nonspatial realms, where elements of anatomical structures are 
highlighted to indicate damage.  This use of visualization encodes 
information for a given injury and represents it through 
placement, color, label and size.  The image in Figure 3 is an 
example of an injury description.  
 

 
Figure 3. Injury Severity Analysis Illustration 

 

4.3 Side-by-Side Patient Analysis 
For trauma-causing events involving multiple patients, Visual 
AID can perform event-level visualizations to examine injury 
relationships.  A side-by-side visual comparison, as illustrated in 
Figure 4, shows patient cases associated with a single event.  
These cases can be grouped together by user-defined criteria.  
Each patient is represented by a scaled-down image to support the 
display of multiple figures adjacent to each other on the screen.  
Injury commonality can be easily examined to identify similar 
patterns by body region (i.e., thorax), type of anatomical structure 
(i.e., skeletal), specific type of anatomical structure (i.e., sternum) 
and severity (i.e., moderate).  The benefit of this technique is that 
it enables an event to be summarized pictorially, while at the same 
time allowing the user to interact with the underlying data to 
better examine event-level patterns.  
 

 
Figure 4. Side-by-Side Patient Illustrations 

 

4.4 Cumulative Frequency Analysis 
In addition to comparing sustained injuries side-by-side, 
sometimes it is useful to categorize and count injuries over a 
series of patients or events. Visual AID includes this capability in 

the form of a frequency analysis mode, as illustrated in Figure 5.  
Injury frequency can be examined across the total number of 
patients or injuries.   In this mode of operation, a unique 
frequency color palette is used to illustrate data density.  Injuries 
are categorized by nature-of-injury and body region (e.g., 
traumatic brain injury, spinal cord injury, vertebral column injury, 
torso and extremities).   

Frequency of injury is illustrated either by body region or type 
of anatomical structure.  The user can control what is visualized 
through filters on severity and type of anatomical structure, and 
perform data queries to keep and remove aspects of the patient 
data records.   

Standardized medical data selection and reporting combined 
with several unique visualization techniques allows Visual AID to 
classify injury by type and anatomical region in a novel manner.  
This functionality provides a manageable number of clinically 
meaningful diagnostic categories that characterize nature-of-
injury and body region categories.  This process: a) simplifies the 
process of classifying injuries; b) provides a standard format for 
reports; c) serves as a standard for comparative studies; d) 
characterizes patterns of injury. 

 

 
Figure 5. Frequency Analysis Illustration 

5 CONCLUSION 
The Visual AID tool has been implemented and is currently being 
used to visualize and analyze injury, with associated threat-to-life, 
and the distribution of wounds and underling injuries.  It uses 
AIS-2005 update 2008, a precise anatomical injury classification 
standard, as its foundation of anatomical injury scoring.  Visual 
AID allows visualization of wounds and associated injuries onto a 
three-dimensional anatomical model of the human body and 
allows the user community to easily create detailed injury 
illustrations. 
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Figure 1  Terrain Visualization, a 2D base network 

of associated terms and interpolated height values 
based on each nodes response to an input feature 
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Figure 2  Terrain Visualization of initial biomarker 
signature. Diseases are laid out in the x-y plane, where 

near proximity to neighboring diseases represents higher 
co-occurrence w ith respect to potential biomarkers. The 

the current f ive-biomarker panel. Color is mapped to 
terrain height for clearer viewing.  
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4 BIOMOLECULAR AND DISEASE NETWORK TERR AINS           
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In this case study, to identify a biomarker signature with high 
disease sensitivity and specificity for breast cancer, we began with 
a set of 5 biomarkers with the highest individual rank for breast 
cancer prediction: BCL6_HUMAN, ERBB2_HUMAN, 

CD44_HUMAN, KIT_HUMAN, 
IGF1R_HUMAN.We began with cancer 
association scores for 54 cancer types 
derived using a method from biomedical 
literature mining.  

In Figure 2, although the profile of the 
initial feature set has breast cancer as a 
distinct peak (suggesting high 
sensitivity), there is a large amount of 
noise, so the specificity needs to be 
improved>(

Figure 3 shows the resulting disease 
terrain profiles after the initial signature 
is modified. Now the user assesses 
performance. Removing 
BCL6_HUMAN from the initial 
signature significantly reduces the noise 
in the circled region in (a); removing 
CD44_HUMAN from the initial 
signature only slightly reduces noise in 
the circled region in (b); removing 
KIT_HUMAN from the initial signature 
slightly reduces noise in the circled 

region in (c); removing ERBB2_HUMAN from the initial 
signature greatly introduces more noise over all the profile in (d); 
removing IGF1R_HUMAN does not result in visible changes in 
the profile (e). 

The above indicates that removing BCL6_HUMAN has the 
most improved profile due to the significant noise reduction.  
Therefore we only accept the modification of removing 
BCL6_HUMAN. 

The signature of the current 4 marker panel still does not yield a 
satisfactory profile, so we continue with the Modify Signature 
step and constructed terrains for the newer signatures in figure 4 
(a)-(d). Removing KIT_ HUMAN (a) results in the best profile.  
At this point the biomarker panel includes ERBB2_HUMAN, 
IGF1R_ HUMAN and KIT_ HUMAN. When comparing the 
disease terrain profiles of the initial signature (5a) and the 
signature after iterative refinement model (5b), one can see that 
the newer signature has much less noise in the profile therefore 
has an improved specificity to the breast cancer.  

To further build on the current best 
signature, two additional signatures are 
defined by removing IGF1R_HUMAN 
and CD44_HUMAN. Based on images 
generated by last two iterations, 
ERBB2_HUMAN is not removed. 

The user observes that Figure 5(b) 
represents a better improvement than 
ERBB2_HUMAN and CD4_HUMAN 
(not displayed). The signature of two 
biomarkers, ERBB2_HUMAN and 
IGFIR_HUMAN, is satisfactory and we 
proceed to Step 4.  

The final gene signature 
ERBB2_HUMAN and IGF1R_HUMAN 
(Figure 5b) significantly improves the 
expected disease sensitivity and 
specificity of breast cancer. The user can 
now use this biomarker panel for 
creating a classification system or 
conducting future experiments. 
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Figure 3  TAO_REMOVE generates 4-marker panels. TAO_CONSTRUCT renders f ive terrains, 
and all results are displayed to the user w ith TAO_COMPARE. (
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!"#$%&'()* &+*$*,')&-&%"*.$/0**1'("*"2!"33&)#2"+-*2$/*

!"*+"4"))$(/*-'*"%'5"*4#$+6"0*

Mobile Health Apps in Practice 
7)*2'!&3"* 4'2,8-&+6* !"4'2")* ,$(-* '9* '8(* :$&3/* 3&%");*
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1.1.1 Bant 
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Figure 1. Bant Interface for readings (data collection) and 
trends (summary) [3] 

 
 

1.1.2 Moody Me 
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Figure 2. Input and summary screenshots from Moody Me  
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1.1.3 Mood Map 
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Figure 1. Mood Map 

 

1.2 The Interface of Kalm 
&
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1.2.1 Anxiety/Experience Tracker 
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1.2.2 Games 
E-+%6&-,%&-&@((3&5-.&)(&4,-*)#*%&WOS&"(+%5(,=&5"#$%&
#'& -& 6-7%& %'/#,('+%')1& 4-,)#*9$-,$.& '('C)5#)*"& 0-6%3&
@-+%6& V)"(6%& ,%89#,#'@& 7-6)& ,%7$%:%6Y;& & S"%& /#69-$&
+%)-4"(,6&96%3& #'&@-+%&*-'&,%#'7(,*%&)"%&#'7(,+-)#('&
$%-,'%3&#'&)"%&,%6)&(7&)"%&-44$#*-)#(';&&!"%'&@-+%4$-.&
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Figure 3. Rolando gameplay interface  
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Discussion & Future Work 
S"%&6+-,)4"('%&#6&-&/#-0$%&/%'9%&7(,&)"%&4,%6%')-)#('&
-'3& 4,-*)#*%& (7& 46.*"($(@#*-$& "%-$)"& #'7(,+-)#(';& S"%&
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BodyTrack: Open Source Tools for Health Empowerment through Self-Tracking 
Anne Wright and Ray Yun, BodyTrack Project, CREATE Lab, Carnegie Mellon University 
 

The BodyTrack project has interviewed a number of people who have improved their health by 

discovering certain foods or environmental exposures to avoid, or learning other types of behavioral 

changes. Many describe greatly improved quality of life, overcoming in some cases chronic 

problems in areas such as sleep, pain, gastrointestinal function, and energy levels.  In some cases, 

a doctor or specialist’s diagnosis led to treatment which mitigated symptoms (e.g. asthma or 

migraine headache), but where discovery of triggers required self-tracking and self-experimentation. 

Importantly, the act of starting to search for one’s sensitivites or triggers appears to be empowering: 

people who embarked on this path changed their relationship to their health situation even before 

making the discoveries that helped lead to symptom improvement.   

 

The BodyTrack Project is building tools, both technological and cultural, to empower more people to 

embrace an “investigator” role in their own lives.  The core of the BodyTrack system is an open 

source web service which allows users to aggregate, visualize, and analyze data from a myriad of 

sources -- physiological metrics from wearable sensors, image and self-observation capture from 

smart phones, local environmental measures such as bedroom light and noise levels and in-house 

air quality monitoring, and regional environmental measures such as pollen/mold counts and air 

particulates.  We believe empowering a broader set of people with these tools will help individuals 

and medical practitioners alike to better address health conditions with complex environmental or 

behavioral components.  

 

We propose to demonstrate the current status of the BodyTrack tools and describe how we are 

using these tools to empower individuals to more powerfully explore their situation, and to enhance 

their ability to communicate and collaborate with their doctors and other health care providers. 

 

!
 

!
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Demo of VISCARETRAILS: Visualizing Trails in the Electronic
Health Record with Timed Word Trees, a Pancreas Cancer Use

Case

Lauro Lins, Marta Heilbrun, Juliana Freire, and Claudio Silva

October 1, 2011

In this session we will demonstrate VISCARETRAILS, a system to visualize aspects of event sequences
datasets (e.g., set of patient histories). VISCARETRAILS features as its central display a visualization called
Timed Word Trees, a generalization of Word Trees. The dataset we will use to demonstrate VISCARETRAILS
consists of health care events on pancreatic cancer patients.

VISCARETRAILS supports the following pipeline: (1) a set of time-stamped event sequences is loaded into
the system; (2) group-events are defined as needed (STAGE III in Figure 1 is a group-event that means either
event III, IIIA, IIIB or IIIC); (3) a timed word tree is generated by dragging and dropping events and/or
group-events into the central canvas (in Figure 1, stage events & DEAD were dragged and dropped into the
canvas); (4) one of the dropped events is defined as the root event (by default the root is the first element that
was dropped in the visualization, but a user can change the root event at any time); (5) the visual summary
generated is inspected to understand paths that end and start in the root event; and (6) path nodes are selected
to obtain survival curves for the sequences. Figure 1 shows survival curves of the selected stage nodes (red,
green, purple, and orange paths): bottom left widget. The visual summary conveys information about frequency
of events (larger fonts and thicker transitions means more sequences going through the path), time distances
(based on average times) of the events relative to their parent event; and a hint on the dispersion (i.e., standard
deviation) of time distances in each event transition (i.e. the hue of blue darkens as the standard deviation of
the time distance decreases). On the second bottom widget (from left to right), we show a box-plot for the time
distance distribution from the selected events to the root event.

Figure 1: VISCARETRAILS session on a dataset of pancreatic cancer patients
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Food For The Heart: Visualizing Nutritional Contents for  

Food Items for Patients with Coronary Heart Disease 
 

Fransisca Vina Zerlina1, Bum chul Kwon2, Sung-Hee Kim2, 
Karen S. Yehle2, Kimberly S. Plake2, Sibylle Kranz2, Lane M. Yahiro2, and Ji Soo Yi2 

  University of Washington1       Purdue University2 

 

1 INTRODUCTION 
We introduce a web-based interactive nutrition-based food selec-
tion tool for patients with Coronary Heart Disease (CHD), called 
“Food ForThe Heart (FFH),” inspired by a multivariate infor-
mation visualization tool, called Dust & Magnet [1]. FFH visual-
izes four core nutritional components (sodium, fiber, saturated fat, 
and cholesterol) of more than 30,000 food items in two different 
visualizations, a bar chart and the Dust & Magnet view, upon 
user’s request. In particular, The Dust & Magnet view provides an 
overview of multiple food items based on the four core nutritional 
components in a two-dimensional pane so that a user can easily 
find which food items are suitable for their diet.  

2 DESIGN DETAILS 
FFH is a web-based dietary intervention system whereby  a user 
can evaluate multiple food items based on their nutritional con-
tent. The main page is designed as shown at the top.  It consists of 
five segments  labeled them from A to E with red borderlines for 
convenience.  Each segment is described below : 
• A (Search Box): A user can enter the name of a food item 

(e.g., chicken) or search by brand names (e.g., McDonald’s). 
• B (Search Results): A list of food items generated by an en-

tered search query.  The nutritional content of each item can 
be found in two graphs, C and D, upon the user’s click.  Each 
item could be inserted into one of the meal boxes in E. 

• C (Nutrition Chart): The chart visualizes accumulated nutri-
tion values of food items selected from B across the four nu-
tritional components (sodium, saturated fat, fiber, and choles-
terol) per day. The Y-axis indicates the percentage of the 
recommended amounts (100%) of  each nutritional compo-
nent. 

• D (Dust & Magnet): Using the dust particles (food items) and 
magnets (four nutritional components) metaphor, the system 
spreads out food items based on the amount of each nutri-
tional component. For example, the more sodium in a food 
item, the closer it is positioned to the sodium magnet. 

• E (Diet Plan): Food items inserted from B can be seen here. 
A user can also view dietary intake from previous days by 
switching dates.  

3 DEMONSTRATION 
The demonstration will walk through how a user can control 
his/her diet plan by using this website. The audience will partici-
pate in using the system on the fly by adding their favorite food 
items to see how healthy their choices are. The demonstration will 
provide  insights about how we can help patients control their diet 
by leveraging the power of visualization systems.  

REFERENCES 
[1] Yi, J. S., Melton, R., Stasko, J., & Jacko, J. A. (2005). Dust & Mag-

net: Multivariate Information Visualization using a Magnet Meta-
phor. Information Visualization, 4(4), 239-256. 
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ImageVis3D Mobile in Clinical Use

Jens Krüger∗ Thomas Fogal†

Figure 1: ImageVis3D Mobile displaying a contrast-enhanced CT
scan of a human male. High-quality imagery can be streamed
from more capable rendering resources, or rendered directly on
the device.

1 Introduction

While there have been a variety of research applications developed
for mobile platforms [2, 1, 6, 5, 8, 9], there has been less work in
applying such techniques in a clinical setting. A notable exception
is Meir and Rubinsky’s work [7], which attempted to use a mobile
system to improve cancer diagnosis. Despite this, there has been
no publicly available open platform for the deployment of mobile
medical visualization systems.
ImageVis3D Mobile (“IV3Dm”) is a visualization application

for mobile devices, enabling physicians to bring clinical practice
to the point of care. Using IV3Dm, visual feedback can be dissem-
inated to trained professionals to aid them in interpreting data,
feedback from other physicians can be obtained in chance ‘hallway
meetings’, and patient data can be communicated directly to the
patient in a manner they can interpret and understand.

2 From Supercomputer to Tablet

ImageVis3D Mobile and its desktop counterpart, ImageVis3D,
run on supercomputers and tablets, as well as everything in be-
tween [3]. Using the desktop version of ImageVis3D, one can
visualize data of unlimited size using commodity workstations [4].
This data-size-agnostic feature has become critical as modern
scanners continue to produce scans which are a challenge to view
in anything but two dimensions. ImageVis3D allows high resolu-
tion three-dimensional reconstructions of CT and MRI data (as

∗IVDA, DFKI, Intel VCI, SCI
†SCI

Figure 2: Initial application of ImageVis3D Mobile: providing
visual feedback for setting deep brain stimulation parameters.

well as a variety of other data types), in an easy to use, lightweight
application. We continue to expand our exploration of extensive
computing installations to render larger data in real time.
However, we believe the revolutionary aspect of this software

system is in its ability to visualize one’s data on mobile devices.
This software enables physicians to look at data in an entirely
new dimension, uncovering aspects which have never been visible
before. An ‘always on’ device for medical visualization opens up
new avenues for collaboration and data dissemination which are
not possible in a more traditional clinical setting.

3 Zero Infrastructure

A common problem with novel medical visualization techniques
is transferring them from a research environment to clinical prac-
tice. Scalable infrastructures must be created and maintained,
entailing laborious procedural red tape and excessive per-client
configuration. With ImageVis3D and ImageVis3D Mobile, these
boundaries are quickly being broken down. We are developing a
cloud-based infrastructure to enable new research groups to uti-
lize the system with 0 configuration. Since the client software is
open source and freely available, installation is as simple as down-
loading any other application. Utilizing platforms that physicians
own personally and already carry with them regularly ensures that
there is no administrative overhead to applying the system.

4 Effective in Practice

Our first application of IV3Dm in a clinical setting has been in
the area of deep brain stimulation (DBS), more specifically for
the treatment of Parkinson’s disease. For the process to be suc-
cessful, a DBS planning ‘programmer’ must work with the patient
to provide individualized stimulation parameters. This can be a
lengthy process using the abstract ‘set and test’ method which
is the standard of care, but using the visual IV3Dm platform as
shown in Figure 2, clinical support staff can perform the operation
an order of magnitude more quickly.

1
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[4] Thomas Fogal and Jens Krüger. Tuvok - an architecture for

large scale volume rendering. 2010.

[5] F. Lamberti and A. Sanna. A Streaming-Based Solution for

Remote Visualization of 3D Graphics on Mobile Devices. 2007.

[6] J. Lluch, R. Gaitán, E. Camahort, and R. Vivó. Interac-
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(a)  Hierarchy-centric layout                        (b) With ICD code name/label overlay               
 
Figure 1. Sunburst display for patient information.  
 

 

 
 
Figure 2. Sequential display for medical diagnostics chain.  

DEMO:  

AnamneVis: A Framework for the Visualization of Patient History 

and Medical Diagnostics Chains
 

Zhiyuan Zhang1, Faisal Ahmed1, Arunesh Mittal1, IV Ramakrishnan1, Rong Zhao1, Asa Viccellio2, and Klaus Mueller1 

1Computer Science Department and Center for Wireless and Information Technology (CEWIT) 
2Department of Emergency Medicine 

Stony Brook University 

 
The medical history or anamnesis of a patient is the factual information obtained by a physician for the medical diagnostics of a patient. 
This information includes current symptoms, history of present illness, previous treatments, available data, current medications, past 
history, family history, and others. Based on this information the physician follows through a medical diagnostics chain that includes 
requests for further data, diagnosis, treatment, follow-up, and eventually a report of treatment outcome. Patients often have rather complex 
medical histories, and visualization and visual analytics can offer large benefits for the navigation and reasoning with this information. 
Here we will demo AnamneVis, a system where the patient is represented as a radial sunburst visualization that captures all health 
conditions of the past and present to serve as a quick overview to the interrogating physician. The patient’s body is represented as a stylized 
body map that can be zoomed into for further anatomical detail. On the other hand, the reasoning chain is represented as a multi-stage flow 
chart, composed of date, symptom, data, diagnosis, treatment, and outcome.  

Our health care informatics prototype aims to provide a comprehensive multi-faceted assessment of the patient and his (her) history for 
intuitive information retrieval by the physician. The goal is information organization and integration along these various aspects. Overview 
and detail-on-demand requires hierarchies, and effective information organization requires robust encoding by ways of well-established 
criteria – we use standard codes commonly used for billing in hospitals which enables us to easily build our system on top of an existing 
health care information system. These codes are ICD, CPT, and NDC. ICD is the code used to describe the condition or disease being 
treated, also known as the diagnosis. CPT is the code used to describe medical services and procedures performed by doctors for a 
particular diagnosis. NDC is the code used for administered drugs. Further goals, often expressed by our collaborating emergency 
physician are ease of information access and flexibility in displayed aggregated information and data. To enable this functionality, our 
system is fully interactive and the displays are fully linked and coordinated. In the following we show snapshots of these displays.  

The hierarchical radial display is used primarily to show information about the patient. There are three cooperating displays: (1) 
symptoms and diagnoses, (2) procedures and treatments, (3) data. These three displays are interlinked to allow doctors to obtain a full 
picture of the patient as well as assess existing relationships. Two examples of this display are shown in Fig. 1. 

The sequential display is used mainly to demonstrate the medical diagnostic flow. The medical records are organized by an underlying 
graph data structure. Each node corresponds to one incident (medical primitive), which could be a doctor visit, symptom, test/data, 
diagnosis or treatment. Edges represent relationships. An example of this display is shown in Fig. 2. 

 
Acknowledgments: We would like to express our deepest thanks to the UC Berkeley Visualization Lab and Stanford HCI group to make 
available the very helpful Flare toolkit, which we used as a basis and extended non-trivially for the system presented in this work. 
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LifeFlow: Understanding Millions of Event Sequences in a Million Pixels 
 

Krist Wongsuphasawat 
!
!

!
!
Description 
Event sequence analysis is an important task in many domains: medical researchers study the 
patterns of transfers within the hospital for quality control; transportation experts study accident 
response logs to identify best practices. In most cases they deal with more than thousands of 
records. While previous research has focused on searching and browsing, overview tasks are 
often overlooked. We introduce a novel interactive visual overview of event sequences 
called LifeFlow. LifeFlow scales to any number of records, summarizes all possible sequences, 
and highlights the temporal spacing of the events within sequences.  
 
Please visit http://www.cs.umd.edu/hcil/lifeflow for more details 
 
Reference 
Krist Wongsuphasawat, John Alexis Guerra Gómez, Catherine Plaisant, Taowei David Wang, 
Meirav Taieb-Maimon and Ben Shneiderman LifeFlow: Visualizing an Overview of Event 
Sequences In Proceedings of the 2011 Annual Conference on Human Factors in Computing 
Systems (CHI'11), 1747-1756. 
 
!
!
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InBox: In-situ Multiple-Selection and Multiple-View Exploration of
Diffusion Tensor MRI Visualization

Jian Chen ∗ Haipeng Cai
University of Southern Mississippi

Alexander P. Auchus
University of Mississippi Medical Center

Figure 1: The InBox multiple coordinated view interface: the user can use in-situ box(es) and sphere(s) to select regular or angular shaped brain
regions. Here selected fibers are within the white-colored boxes and spheres. Two removal boxes are colored in blue. Here, the corpus callosum
(a wide, flat bundle of neural fibers connecting the left and right hemispheres) is selected by operating the widgets from one view to select fibers
in dual views. The datasets are from a normal brain sampled at different seeding resolutions. The two streamtube models of human brains are
from a normal brain model in voxel resolutions of 0.94mm×0.94mm×4.52mm (left) and 1.72mm×1.72mm×3.00mm (right) accordingly.

ABSTRACT

We will demonstrate InBox, an in-situ multiple-selection and
multiple-view interface for interactive exploration of dense tube-
based diffusion tensor magnetic resonance imaging (DTI) visual-
ization. DTI is an in vivo non-invasive technique that measures
the directional dependence of the motion of water molecules in tis-
sues in three-dimensions (3D). Fiber tracking or tractography is a
standard approach to visualize the results of DTI. The tractography
produces a set of integral curves or fibers that follow the principle
direction of diffusion. If fibers are constructed and visualized indi-
vidually through a large volume of DTI, the display gets cluttered
making it difficult to get insight in the data. Thus, efficient interac-
tion is often demanded.

A high-level contribution of InBox is the design considerations
for the tight integration of selection with widget-based interface.
Built on existing techniques and suggestions provided by our DTI
collaborators, our work focuses on the use of conventional desktop
setting and helps users stay in the flow of focused attention. This
work builds on the assumption that focusing on the current work-
ing window can facilitate more precise selection by engaging the
users in their tasks. We call our interface InBox to stand for in-situ
selection.

Figure 1 shows a scenario of use of InBox, where the primary
interface is box- and sphere-based for selecting regular and angular
shapes. The box-based design was inspired by existing selection
approaches in BrainApp [2] and CINCH [1]. The sphere-widget

∗Contact: jian.chen@usm.edu

was added to select regions that include curved fibers to exclude
unwanted ones that would have been chosen with a box. Box and
sphere widgets are as freely added and deleted as needed.

A unique property was to provide interactive side-by-side views
of the data across different scales that are designed to be less de-
manding on visual attention by enabling in place actions. It lever-
ages the use of screen space for splitting actions. Multiple boxes or
spheres can function together using two working modes (selection
and removal) and two associative logics (AND and OR) to support a
rich set of operations. Views are coordinated to facilitate tasks such
as comparing a patient’s DTI captured at different time instances.
For example, our collaborators were interested in comparing the
brain development of two cases (one normal and one agenesis of
corpus callosum or ACC). What the doctor who used InBox did
was to put the two datasets side by side, cull out those peripheral
fiber bundles using the selection boxes, and then fully engage in the
fiber bundles around CC. They did confirm their hypothesis using
our visualization with the InBox interface. Such an interface can
also be useful for educational purposes for showing cases to the
medical school students.
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