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Preface

Visualization and visual analytics show great potential as methods to analyze, filter, and
illustrate many of the diverse data used in clinical practice. Today, (a) physicians and
clinical practitioners are faced with the challenging task of analyzing large amount of
unstructured, multi-modal, and longitudinal data to effectively diagnose and monitor the
progression of a particular disease; (b) patients are confronted with the difficult task of
understanding the correlations between many clinical values relevant to their health; and
(c) healthcare organizations are faced with the problem of improving the overall
operational efficiency and performance of the institution while maintaining the quality of

patient care and safety.

Visualization and visual analytics can potentially provide great benefits to each of these
three core areas of healthcare. However, to be successful, the resulting visualization must
be able to meet the physician’s requirements and be useful for both patients and

physicians.

Despite the continuous use of scientific visualization and visual analytics in medical
applications, the lack of communication between engineers and physicians has meant that
only basic visualization and analytics techniques are currently employed in clinical
practice. The goal of this workshop is to gather together leading physicians and clinical
practitioners to share with the visualization community their need for specific
visualization tools and discuss the areas in healthcare where additional visualization

techniques are needed.

Jesus J Caban,
NICoE / Naval Medical Center
CC / National Institutes of Health

David Gotz
IBM Research
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VISCARETRAILS: Visualizing Trails in the Electronic Health Record
with Timed Word Trees, a Pancreas Cancer Use Case

Lauro Lins, Marta Heilbrun, Juliana Freire, Member, IEEE, and Claudio Silva, Member, IEEE
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Fig. 1. VISCARETRAILS session on a dataset of pancreatic cancer patients. The central top display shows a Timed Word Tree with
staging events (STAGE I, STAGE II, STAGE III, STAGE 1V) and rooted in the death event (DEAD). Selecting the stage nodes, corre-
sponding to severity and extent of disease, the bottom left plot presents survival curves indicating the fraction of each of the four sets
of staged subjects that were still alive after r days, and the box-plot represents the distribution of the time distance the death event.
This visualization confirms that this specific dataset follows the known patterns for pancreatic cancer patients and is obtained with
just a few intuitive mouse gestures.

Abstract— As a mandate in the 2009 ARRS act, all US health care systems are moving toward electronic health record (EHR)
systems to capture and store patient data. The EHR is a rich source of health information about individual patients and/or populations.
The ability to analyze and identify meaningful patterns in this data has the potential to produce important knowledge. Yet, there is still
a considerable gap between what answers are captured in this record and what answers can be effectively extracted from it. To reduce
this gap, more intuitive ways of posing questions and obtaining answers are needed. In this paper we present VISCARETRAILS, a
system based on timed word trees visualization that summarizes event paths relative to a given root event and are obtained through a
simple drag-and-drop user interface. These summaries visually convey information about the nature, frequency and average timing of
the event paths, and serve as a natural starting point to obtain further details and compare different paths. We apply ViISCARETRAILS
in a dataset of pancreatic cancer patients to illustrate its effectiveness.

Index Terms— Information visualization, Electronic Health Records, Survival, Cancer, Word Trees, Tree Layout.

<+

INTRODUCTION

As a component of the ARRS and HITECH acts of 2009, the US gov-
ernment has made a significant investment in order to grow the Elec-
tronic Health Record (EHR). Hospitals and providers who demonstrate
“meaningful use” of the EHR will begin receiving incentive payments
in 2011, with penalties to begin after 2014. The adoption of EHRS is
being pushed with the belief that the information contained in EHRs
will improve medical decision making with an associated improve-
ment in patient outcomes [2].

Information visualization systems have been developed to facilitate
the synthesis and analysis of large amounts of information using tem-

® Lauro Lins is with NYU-Poly, E-mail: lauro@nyu.edu.

o Marta Heilbrun is with Departament of Radiology, Univ. of Utah, E-mail:
marta.heilbrun @ hsc.utah.edu.

o Juliana Freire is with NYU-Poly, E-mail:juliana.freire @ nyu.edu.

e Claudio Silva is with NYU-Poly, E-mail: csilva@nyu.edu.

poral and sequence analysis [7]. This project demonstrates a visual
analytic tool that grew organically from a question and collaboration
between a physician and computer science engineers. This tool is de-
signed to address specifically challenges to the extraction of meaning-
ful information from EHR data. We developed a time-stamped infor-
mation visualization tool, VISCARETRAILS, to facilitate the analysis
of patient histories stored in the EHR. The use case will use VISCARE-
TRAILS to focus on the diagnosis of pancreatic cancer.

VISCARETRAILS is a system based on timed word tree visualiza-
tions summarizing event paths relative to a given root event. These are
generated in a simple drag-and-drop user interface. In particular, in
this domain of patient histories, we see VISCARETRAILS as an inter-
esting alternative to a previous visualization called LifeFlow [6]. This
process summarizes multiple sequences of timed-events and general-
izes the idea of Word Trees [8]. VISCARETRAILS provides the user a
means to explore electronic health data in order to understand patterns,
problems and opportunities in clinical practice.
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2 A VISUAL SUMMARY FOR EVENT SEQUENCES

The central element of VISCARETRAILS is a visualization that sum-
marizes multiple event sequences. The idea is to summarize S, an
input set of event sequences, based on another input: a root event, r.
Once S and r are defined, a visual summary is generated in two steps.
First, an event tree, T, based on S and r is computed. Second, a visual
representation, V, for the event tree, T, is generated.

2.1 Event Trees

An event tree is a simple way to summarize event sequences. Figure 2
shows an example of such an object. Given event sequences S and a
root event r, the first step is to choose an alignment point for each in-
put sequence. In Figure 2, alignment points are indicated by red circles
and i, define their indices. The event at the alignment point of each se-
quence should be equal to the root event (C in our example). Once the
alignment points are defined, we add a root node to the event tree with
label r, offset 0, and set all sequences from S as members of this node
(e.g., central node of T in Figure 2). Next, a left parse (negative oft-
sets) and right parse (positive offsets) on each input sequence starting
from its alignment point is performed. In our example, the left parse of
s1 generates first the node with label B and offset -1 and then the node
with label A and offset -2 (note that s; is present in these two nodes).
The right parse of 51 generates first the node with label D and offset 1,
and then the node with label E and offset 2, both having sequence s
as a member. We follow the same idea for the left and right parses of
the other sequences always reusing existing nodes when possible. For
example, when doing the left parse of s3, we reuse the same node with
label B and offset -1 as the one generated when left parsing s;.
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Fig. 2. Example of an event tree, T, rooted at event c for the set of event
sequences S. Each node in T has an event label, a subset of sequences,
and an offset (small circle). The central visualization in VISCARETRAILS
are visual representations for event trees.

2.2 LifeFlow

The concept of event trees has been shown useful for the problem of
making sense of patient histories. Wang et al. [6] define a sentinel
event (our root event) as a way to align temporal data and find patterns
once the alignment is established. Later, Wongsuphasawat et al. [9]
proposed LifeFlow, a technique that computes an event tree 7' and then
generates a visual encoding for it: V7 r. Figure 3 shows a LifeFlow
visualization for a dataset of hospital events regarding arrivals, transfer
between blocks (ICU, Emergency, Floor), discharges, and deaths. In
VLr, the nodes of T are graphically encoded by rectangles and their
labels are encoded by colors (a legend is necessary to map colors into
event names). The height of each rectangle’s node is proportional to
the number of sequences in its node and the width is proportional to
a summary measure (e.g., mean) of the time difference between the
node’s event and the previous event for all its sequences. The left side
of a child node’s rectangle intersects completely the right side of the
rectangle of its parent node.

Although we considered using the LifeFlow visual summary as the
central display in VISCARETRAILS, two problems drove us to a dif-
ferent visualization. First, the datasets we plan to analyze with VIs-
CARETRAILS contain thousands of event types (e.g., diagnostic exam

names). It is unfeasible to associate a fixed color to each event type and
let a user learn this association once. To understand event paths with
LifeFlow in our use case, a continuous back-and-forth effort between
the main visualization and the color translation legend is required. The
second problem is that we want to support dozens of simultaneous
event types in a single visualization. In this case, even with the color
translation legend, it is hard to read the main LifeFlow visualization,
because it is hard to perceive different colors when more than just a
few colors (i.e., less than a dozen) are used.

2.3 Timed Word Trees

Inspired by Word Tree displays [8], our basic idea was to replace col-
ored rectangle labels used in LifeFlow visualizations with text labels.
If this could be done while preserving, to a certain degree, the other
characteristics of LifeFlow visualizations, we would obtain a better
central visualization for VISCARETRAILS (e.g., without the two prob-
lems mentioned before).

Why not standard word trees? In fact word trees is an interesting
alternative to visually encode paths and path frequencies for an event
tree. The problem is that one piece of information present in event
trees and encoded in LifeFlow visualizations is not encoded in a stan-
dard word tree: the time distance between two events (two adjacent
nodes in an event tree). To address this issue we propose timed word
trees, a generalization of word trees where each word in the tree has
an associated time stamp and the final display encodes the time dis-
tances between the words based on these time stamps. Figure 1 shows
a timed word tree for pancreatic cancer patients. From this display we
can read that the average time span between the last stage event and
the death event decreases for patients that die when officially regis-
tered in, respectively, STAGE I, STAGE II, STAGE III and STAGE IV.
A more elaborate timed word tree example is shown in Figure 4 (same
event tree as Figure 4).

Equally spaced guide-lines are rendered in order to help convey the
concept of time on a timed word tree. One of the characteristics of a
timed word tree is that, although time order is preserved, equal display
lengths might represent different time lengths. To help minimize this
distortion, we map the guide lines crossing the visualization back into
a linear time line (see the the light green, gray, blue transition rect-
angles on the timed word tree displays). Note, for example, that the
guide-lines that cross the DEAD node in Figure 1 are all mapped to the
same point on the light blue rectangle.

Our current algorithm to render timed word trees involves (1) open-
ing space in the time axis to fit event label dimensions and time dis-
tances, and (2) setting a y coordinate to the words (assuming x coor-
dinate is time) so as to avoid text overlaps and at the same time have
a packed layout. A detailed explanation of (1) and (2) is beyond the
scope of this paper, but it is worth mentioning that the algorithm is
fast: O(nlog(n)), where n is the number of words, and we are able
to layout timed word trees with millions of nodes in a fraction of a
second using a standard laptop.

3 VISCARETRAILS SYSTEM

VISCARETRAILS supports the following pipeline: (1) a set of time-
stamped event sequences is loaded into the system; (2) group-events
are defined as needed (STAGE III in Figure 1 is a group-event that
means either event I1I, ITITA, IIIB or IIIC); (3) a timed word tree is
generated by dragging and dropping events and/or group-events into
the central canvas (in Figure 1, stage events & DEAD were dragged and
dropped into the canvas); (4) one of the dropped events is defined as
the root event (by default the root is the first element that was dropped
in the visualization, but a user can change the root event at any time);
(5) the visual summary generated is inspected to understand paths that
end and start in the root event; and (6) path nodes are selected to obtain
survival curves for the sequences. Figure 1 shows survival curves of
the selected stage nodes (red, green, purple, and orange paths): bottom
left widget. The visual summary conveys information about frequency
of events (larger fonts and thicker transitions means more sequences
going through the path), time distances (based on average times) of
the events relative to their parent event; and a hint on the dispersion
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Fig. 3. LifeFlow visualization, V;r, summarizing hospital event se-
quences for 91 patients (taken from [9]).

(i.e., standard deviation) of time distances in each event transition (i.e.
the hue of blue darkens as the standard deviation of the time distance
decreases). On the second bottom widget (from left to right), we show
a box-plot for the time distance distribution from the selected events
to the root event.

4 PANCREAS CANCER USE CASE
4.1 Pancreas Cancer

Cancer represents a unique case in which to use EHR data to study
health care complexity. Cancer of the exocrine pancreas is the fourth
leading cause of cancer death in the US. In 2010, it was estimated that
43,140 new cases and 36,800 deaths occurred from pancreatic cancer
in the US, with only 6% overall survival at 5 years [1].

4.2 Patient Cohort

Since 2000 more than 1300 cases of Cancer of the Pancreas have been
diagnosed in the State of Utah. Many of these patients are triaged to
a single National Comprehensive Cancer Network tertiary care cancer
center. This center maintains cancer patient data in an electronic data
warehouse. The pancreatic cancer patient data on 631 subjects was
extracted in the summer of 2010. In this initial pass, 17,780 unique
events, recorded from an EHR, including cancer stage details, vital
status, radiology and other diagnostic procedure codes, and laboratory
tests were imported into VISCARETRAILS. In order to comply with
patient privacy rules, the event data was extracted from a data ware-
house, and the subjects were anonymized.

4.3 Cancer Survival

This use case demonstration of VISCARETRAILS establishes that the
information in the EHR can be read into the visualization program,
and that the record of events is intuitively accurate.

The VISCARETRAILS display in Figure 1 demonstrates an ex-
pected distribution of patients and expected outcomes. According to
the American Cancer Society, the five year survival for local and re-
gional disease is 31%, while less than 20% of patients present with low
enough stage disease to be considered surgical candidates [1]. In our
population, the tree intuitively and quantitatively demonstrates the sur-
vival. Two-thirds (64%) of subjects present with advanced stage dis-
ease. The median survival for the 9% of the population who presents
with Stage I disease is almost 750 days but only 200 days for subjects
who present at Stage I'V. This visual information mirrors that which
is generated statistically by a Kaplan-Meier survival curve, however
is intuitive to the physician end-user, and bypasses interaction with a
statistical program.

8086 VisCareTrails: Timed Word Trees for EHR (Dataset: 91 patients, 593 events)
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Fig. 4. Proposed timed word tree visualization, Vywr, in VISCARE-
TRrAILS for the same event tree of Figure 3.

4.4 Identification of unclean and missing data

In the database, the records of Dead (n = 427) or Alive (n = 202) are
recorded. For two patients an assessment of vital status is unknown
(Figure 5). Four of the subjects had events that took place after the
Dead event. When the tree is rooted on Dead, these events appear as
positive branches. This type of unclean data is easily identified in the
visualization tool.
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Fig. 5. Data cleaning: by dropping @BEGIN, DEAD, ALIVE and @END
events we are able to visually identify a path that shouldn’t exist: from
@BEGIN direct to @END. Mouse hovering on this path we get a report
showing two patient identifiers and their events between @ BEGIN and
@BEGIN. Highlighted NONE event also requires further investigation.
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4.5 Detection of diagnostic testing strategies

The most commonly utilized diagnostic test in the cohort is a CT of the
abdomen and pelvis CT_AP, of which 424 patients underwent a total
of 1469 examinations. Figure 6 shows the most common sequences of
diagnostic tests in the Stage IV group of patients. This interface read-
ily demonstrates the types, frequencies and sequences of tests that oc-
cur in the cohort. The hypothesis that prompted this visualization tool
is that differences in survival can be attributed to different diagnostic
tests. An evaluation of Surveillance Epidemiology and End Results-
Medicare-linked data from 2010 [4] suggested that patients with pan-
creatic cancer who underwent an endoscopic ultrasound (EUS) had
improved survival compared to those who did not. We attempted to
replicate this analysis in our data, by looking at subjects who under-
went EUS. However there were only 48 such subjects in the cohort,
making any analysis limited because the absolute number of events
per node tended to be very small.

5 DiscussiOoN
5.1 Data interpretation and domain expertise

The interaction and impact of a domain expert in the design of this
tool is an essential component of the tool development. The hypothe-
sis that prompted this visualization tool is that differences in survival
can be attributed to different diagnostic tests. In one pass, examining
the utilization of PET, a curve was generated showing that subjects
who had a PET < 70 days after the staging event had a shorter sur-
vival than those who had a PET > 70 days after the staging event (not
shown). This might suggest that an early PET was associated with
poorer outcomes. However, the physician, suggested rather, that the
subjects who were alive > 70 days after staging, just by being alive,
had more opportunities for surveillance imaging.

In regards to the question of the role of the EUS in the diagno-
sis, the domain expert deemed 48 an unrealistically low number. The
information brought into the tool only pulled from the primary diag-
nosis procedure codes (ICD code). Because multiple procedures may
be coded in a single setting, that is to say an endoscopic retrograde
cholangiopancreatogram (ERCP) will be performed in the same set-
ting as an EUS; we may have caught the primary code for the ERCP,
but missed the secondary procedure code for the EUS. It will be nec-
essary to pull the secondary procedure codes into the database in order
to run this analysis.

Heterogeneous information will be a part of any EHR and subse-
quent analysis as the uptake of these records is inconsistent, and data
standards do not yet exist [3]. The interaction between physicians and
clinical experts and the systems that make it a simple process to iden-
tify of the data that is missing, unavailable, or in error is essential to
optimize the analysis process of the EHR. Some of the inefficiencies
in medicine may be due to events that do not occur and should, such
as recommended screening [5]. Visualization tools may facilitate the
process of identifying steps not taken.

5.2 Limitation

Timed word tree visualizations require events to follow the exact or-
der in which they happened. This is useful for creating a snapshot of
the events that lead up to the end of the study period or death. How-
ever, it may be that it is not exactly the sequence of events or tests but
rather the specific combination of events or tests that segregate popu-
lations. Until it is possible to create distinct groups of test populations
(e.g., patients who had CT_AP and EUS compared to patients who
had CT_AP, EUS and MRI, regardless of whether the EUS or the
CT_AP was the first event) we may be missing relevant patterns in the
data.

6 CONCLUSIONS

Time stamped information visualization tools, like VISCARETRAILS,
capture EHR patient events and display the information in an intu-
itive fashion. This makes it very useful for the purposes of analyzing
a record when there is a discrete start and end event, such as cancer
records. However, challenges persist in optimizing the tool to tease

800 VisCareTrails: Timed Word Trees for EHR (Dataset: 631 patients, 17780 events)
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Fig. 6. Timed word tree with most frequent event paths (> 14 patients)
after a patient gets registered in STAGE IV. Events considered are in di-
agnostic test groups CT_AP, CT_T, EUS/ERCP, MRI_A, or PET. Event
@END was included to indicate frequent paths where no event in a di-
agnostic test group occurred (e.g., 33% of the patients are not tested in
any of the considered diagnostic tests: thick branch leaving root event).
Branches are sorted by average transition time.

out both diagnostic testing strategies and bundled events that are asso-
ciated with differences in survival.
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ABSTRACT

The medical history or anamnesis of a patient is the factual
information obtained by a physician for the medical diagnostics of
a patient. This information includes current symptoms, history of
present illness, previous treatments, available data, current
medications, past history, family history, and others. Based on this
information the physician follows through a medical diagnostics
chain that includes requests for further data, diagnosis, treatment,
follow-up, and eventually a report of treatment outcome. Patients
often have rather complex medical histories, and visualization and
visual analytics can offer large benefits for the navigation and
reasoning with this information. Here we present AnamneVis, a
system where the patient is represented as a radial sunburst
visualization that captures all health conditions of the past and
present to serve as a quick overview to the interrogating
physician. The patient’s body is represented as a stylized body
map that can be zoomed into for further anatomical detail. On the
other hand, the reasoning chain is represented as a multi-stage
flow chart, composed of date, symptom, data, diagnosis,
treatment, and outcome.

KEYWORDS: health care, medical record presentation, EHR, EMR

1 INTRODUCTION

The electronic health record (EHR) digitally stores patient health
information generated by one or more clinical encounters in any
care delivery setting. This information includes patient
demographics, problems, symptoms, diagnoses, progress notes,
treatments, medication, vital signs, past medical history,
immunizations, laboratory data, radiology reports, and many
others. However, the acceptance of the EHR in clinical practice
lags far behind its expectation and potential. Related information
and overviews are typically difficult to obtain, severely impeding
a physician’s diagnostic reasoning. The inefficient, fragmented
display of patient information is a likely cause. In this paper we
offer a first step to overcome these deficiencies by
comprehensibly organizing the patient medical history, also
known as anamnesis. We employ the concept of Five W’s (who,
when, what, where, why, and also how) of journalistic reporting to
structure the medical information domain and provide a suitable
visual mapping for each for visual information display.

The Five W’s are the elements of information needed to get a
full story. They are encountered in many playing fields: by a
journalist uncovering a political scandal, a police detective
investigating a crime, a customer service representative trying to
resolve a complaint, and a market analyst planning an effective
marketing campaign. The order in which the information is
gathered or interrogated can vary case by case — crucial is only
that all five W's are ultimately addressed.

When it comes to applying the Five W’s to visualization
design, we can break it down into two steps: (1) identify all Five

W components and their relations, and (2) map these to suitable
visual information encodings and interactions.

We propose to use the Five W’s in our health care informatics
application as a means to establish a comprehensive multi-faceted
assessment of the patient and his (her) history for intuitive
information retrieval. The goal is information organization and
integration along these various aspects. Overview and detail-on-
demand requires hierarchies, and effective information
organization requires robust encoding by ways of well-established
criteria — we use standard codes commonly used for diagnosis and
billing in hospitals which enables us to easily build our system on
top of an existing health care information system. These codes are
ICD, CPT, and NDC. ICD is the code used to describe the
condition or disease being treated, also known as the diagnosis.
CPT is the code used to describe medical services and procedures
performed by doctors for a particular diagnosis. NDC is the code
used for administered drugs. ICD is widely accessible (developed
by the World Health Organization), CPT is proprietary and only
available to healthcare providers, and NDC is also publicly
available. Further goals, often expressed by our collaborating
emergency physician — who is also a co-author of this article — are
ease of information access and flexibility in displayed aggregated
information and data. To enable this functionality, our system is
fully interactive and the displays are fully linked and coordinated.

2 REeLATED WORK

A number of approaches for the visualization of medical patient
records have been proposed, and new systems are likely to emerge
as the Electronic Health Record (EHR) is adopted widely. A
frequent paradigm is to organize the patient records along the time
axis. Prominent efforts in that direction are LifeLines [7] and
LifeLines2 [11] in which health records are distinguished by their
inherent aspects, such as problems, symptoms, tests/results,
diagnosis, treatments and medications, etc. and color is used to
indicate severity or type A level of detail mechanism allows one
to zoom into patient records. A number of other works, such as
[6], have also embraced this type of patient data visualization.
Particularly interesting in this context is the work of Aigner et al.
[2] who have made use of illustrative abstractions to gradually
transition between broad qualitative overviews of temporal data
(for example, blood pressure) to detailed, quantitative time
signals. These techniques are part of the Midgaard system [3]
which also provides a visualization scheme in which acquired
patient data are mapped to a template of a human body (although
little further detail on how this scheme is used in practice is
available). The system described in [8] gathers close-ups of
acquired radiological data around a volume-rendered full body. In
fact, many modern EHR systems now support time-line views and
are also beginning to support body-centric data layouts. Another
frequently used paradigm is that of flow-charts, as used in clinical
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algorithm maps [5] and others [4][10], where patient records are
visualized as a logical execution sequence of plans. These
methods typically operate without temporal alignments. Finally,
works also exist that combine these two paradigms into
coordinated views [1].

While our recent work [12] also embraced the Five W’s
scheme, its main focus was a visual interface that a doctor might
use to log and review evidence gathered (and actions required)
during a patient-doctor dialog (called encounter). This system
combined the temporal functionality of [7][11] with the body-
centric data arrangement of [3][8] and supported analytical
reasoning with these information items via a force-directed graph
(called the diagnosis sandbox).

When cast into the Five W’s we find that most existing
systems support the when, what, why, and where aspects quite
well, although few support all of these. Functionality for
coordinated views linking specialized visualization for these
aspects is less supported. Apart from this, a further main
difference to existing systems is our representation of the who.
While most systems reduce it to simple personal data, such as
name, age, gender, smoker, and the like, we see it as an
opportunity to represent all medical information ever recorded
about a patient — a true reflection of the person (in terms of
medical history at least). All is captured within a modem
information visualization framework and linked with the other
coordinated displays for the other 4 W aspects.

3 IDENTIFYING THE FIVE W’S: INFORMATION EXTRACTION

The information flow of our system is summarized in Fig. 1. The
input to our system are patient records and medical reports,
doctor-patient dialogs and other interactive inputs, results from
triage, and data acquired from the patient, such as radiological
images, lab analyses, and the like. At the processing stage an NLP
(Natural Language Processing) engine cooperates with an online
medical ontology server to extract structured information and
relationships from this incoming information and data stream. It
then formats the extraction results into the Five W model and
passes it on to the visualization engine. The visualization engine
has all procedures and data models to encode the Five W
information facets into corresponding visuals and interaction
procedures. The output of this process is then presented in the
visual interface that is subject of this paper. In the box labelled
‘Output’ we show two displays: (i) a hierarchical radial ring
display (foreground window) that visualizes the patient history in
the context of a centered body map and (ii) a sequential (causal)
display (background window) that visualizes the diagnostic
reasoning chain. Before we describe this interface in detail, we
first discuss the conceptual information organization of our
system, in terms of the structuring Five W’s.

31 The Who and What

The who and what information helps doctors to quickly assess the
history and status of the patient. It describes the patient in terms
of:

¢ Symptoms and Diagnosis: this includes the patient’s symptoms,
injuries, and any diagnosed diseases. All of this information can
be encoded using the ICD code standard.

¢ Procedures: these include patient tests and examinations,
treatments administered, and drugs prescribed. This type of
information can be encoded using the CPT code or the ICD-
procedure code standard, and the NCD code standard.

¢ Data: these include test and examination results, review of
systems, vital signs, and social and family history. The codes for
these are part of the procedure code and yields information on
what the patient already has.

Our system encodes this information in two ways: in a
hierarchical radial ring display and in a sequential (causal)
display.

3.2 The Where

The where information refers to the location of the who and what
information within the confines of the patient’s body. While not
all information can be localized that way, for the information that
can be localized, we encode it in a body outline map surrounded
by the ring display. Items on the ring display are pointing to the
appropriate locations on the body. The Google Body Browser [13]
could then be indexed by a subset of the what and so give the
doctors a good start for further exploration and also offer
explanations to the patient.

3.3 The When, Why, and How

The when, why, and how show a case under (doctor) collaborative
diagnosis/treatment, or an entire life span. It demonstrates for
each node what, when, why, and how that node appears. Various
multi-resolution and selection techniques are available to make
the visualization scalable. It supports two types of displays: a
sequential display and a hierarchical radial display.

The sequential display stresses causal relationships and
encourages causal reasoning done by the doctor. It also aims to
model the typical medical workflow: (1) observe symptoms and
possibly browse history data, (2) prescribe and evaluate tests
results, (3) form hypotheses and possibly acquire more data, (4)
cast diagnoses and (5) prescribe treatments. These steps may all
be executed within one patient visit or they may prolong over
some geriod of time, but the overall workflow is always engaged.
The 5 step may include a referral to another doctor, which then
starts another workflow (back-linking to the previous).
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The hierarchical radial display aims to provide an overview of
the entire history of the patient, offering detail on demand.

4 ENCODING THE FIVE W’S: INFORMATION VISUALIZATION

We have two types of cooperating displays:

¢ A hierarchical radial (patient overview) display with an
integrated body outline primarily for the who and where.

¢ A sequential (diagnostic reasoning) display primarily for the
when, why, and how.

The what is part of both displays (in form of the various nodes)
and is context-sensitive. The two interfaces are linked, such that
operations on either view will be reflected in the other. Thus, one
can quickly switch between the sequential (and possibly evolving)
diagnostic reason flow and the radial patient overview display.

4.1 Hierarchical Radial Display — The ‘Who’ Display

The hierarchical radial display is used primarily to show the who
and where information of the patient. Based on the category
information discussed in Section 3.1, the who includes three radial
displays, one for symptoms and diagnoses, one for procedures and
treatments, and one for data. These three displays are interlinked
to allow doctors to obtain a full picture of the patient as well as
assess existing relationships.

4.1.1 Data Model

We use a tree data structure to store the code hierarchy
information. For each symptom or diagnosis the patient has, we
find the node n in the tree with the corresponding ICD9 (soon
ICD10) code, and insert the new item as a child for node n. For
example, if the patient has bacterial meningitis whose ICD9 code
is 320, we first build an incident node m for this diagnosis to store
its information (severity, result, etc.). In the tree, we find the node
n with code 320, which is [320 bacterial meningitis]. Then we
insert m as a child of n. After this, we update all ancestors of n
with the new inserted incident node’s information, such as number
of incidents that fall into this category, severity, and so on. By
doing this for all symptoms, diagnosis, and procedures, the tree
will always be current and contain the patient’s entire history.

4.1.2  Visual Design

We use the sunburst visualization paradigm [9] (see Fig. 3) to
visually convey the tree structure. A sunburst is a polar-
coordinates hierarchical space-filling diagram. Nodes in the
sunburst layout are drawn as solid areas (either wedges or bars),
and their placement relative to adjacent nodes reveals the
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Figure 3: Sunburst display for symptoms and diagnoses

(b) Patient-centric layout
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Figure 2: Node design. Color encodes severity. The main node
layer tells us that the patient has a relative severe disease in the
nervous and sense organs. The children layers provide more
detail with regards to what the diseases are.

relationships in the hierarchy. Because the nodes are space-filling
the angle for each node can be used to encode additional
information, such as number of incidents in our case.

Each node has a wedged shape in the sunburst tree. We
further decompose the node into three layers to encode more
information, as is shown in Fig. 1. These layers are:
¢ Layer 1: the main node layer which is used to display
information about the node, such as codes, name, etc.
¢ Layer 2: encodes the next lower level in the hierarchy. It is
meant to give users a quick overview on the sub-diseases without
showing their real nodes. We provide this layer to make the
hierarchy display scalable.

Each radial display is either hierarchy-centric or patient-
centric. In the hierarchy-centric display (Fig. 3a), each node in the
sunburst tree is sized by how many sub-categories it has. It
focuses more on the hierarchy information represented in the
medical codes and serves as an illustration of the complexity of a
sub-system and its composition. In the patient-centric display on
the other hand, more radial space is dedicated for
diagnoses/procedures the patient had activities in. For categories
that the patient does not have any activities in, the node will be
collapsed to save space for others (see Fig. 3b).

There are three levels of code hierarchies in the sunburst
radial display. The first level corresponds to the highest code
hierarchy level. The second level shows more detailed categories.
The third level contains the incident nodes, which are the medical
items (symptoms/procedures/diagnosis) that the patient has
activities in. Three default level filters are provided to help users
quickly explore these three levels. Also users can expand and
collapse the nodes interactively by their expertise.

The root of the tree is displayed in the center of the sunburst.
However given the sole application context — the patient — we
chose to replace the standard root node by a body outline. This
enables us to intuitively fuse the who with the where display. If an
incident (medical record) has corresponding location information,

,".'ﬂi%iiii%.'."ﬁglnx{.
G T
£ t‘éﬁ ] TR

,'!:. » \
N

9 A
U ¥
.%\? i
B
Ui e
‘“'@gsﬂi‘ﬁ;:ﬁss

(c) Display with ICD code name/label overlay

19



2011 Workshop on Visual Analytics in Healthcare

a red dot is displayed in the body outline. The intensity is used to
encode the severity. Thus by looking at the body outline, doctors
can quickly learn which parts of the patient’s body have (or had)
diseases and also judge their severity by the color intensity.
Hovering on the red dots will popup more details about the
injured part, such as name, severity, and how many incidents are
related. Clicking the red dot will highlight the corresponding
diseases in the sunburst tree.

Finally, users unfamiliar with the ICD9 coding system have
the option to display the ICD node names and labels as an overlay
(see Fig. 3c). Since the nodes are always in the same relative
positions in the sunburst display, experienced users may soon
acquire a mental map of the system and only require the overlay
in non-routine situations.

4.2 Sequential (Causal) Display

The sequential display (Fig. 4) is used mainly to demonstrate the
what, when, why and how information, which embodies the
medical diagnostic flow. The medical records are organized by an
underlying graph data structure. Each node corresponds to one
incident (medical primitive), which could be a doctor visit,
symptom, test/data, diagnosis or treatment. Edges represent
relationships.

4.21 Visual Design

A node is displayed as one elongated box because it better utilizes
the rectangular screen, better fits the text, and has better
scalability compared to a circular shape. All of our medical
collaborators agreed on this. If two nodes are related with one
another, an edge is drawn to link them together. Edge bundling is
used to reduce cluttering. Usually the diagnostic workflow is:
Patient visits doctor — patient complains about symptoms —
doctor orders tests for patient — doctor renders a diagnosis —
treatments are given — outcome is observed. Thus, the sequential
display can show these reasoning chains very well. In some cases
the current doctor refers the patient to see another specialist
(which is the treatment in this case), or current symptoms are
caused by previous described drugs (which can be a form of
diagnosis). In situations back edges appear. Back edges are shown
in different color (red) to make them easy to see. Back edges may
be due to treatments causing new symptoms, or they may be
treatments constituting doctor referrals. Fig. 4 has no back edges.

5 CONCLUSIONS

We have presented an application of the Five W’s scheme of
information gathering and reporting, with a special application to

Wed Dec 1 2010
Family Dactor

Fri Dec 3 2010

Retinal Special.,

Wied Dec B 2010
Eye Infirmary

® Incident ® Symptom @ Test @ Diagnosis ® Treatment
Figure 4. Sequential display for diagnostic chain.
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health care informatics. While our informal user studies are highly
encouraging and promising, we would like to conduct more
formal studies next. We have collaborations with six leading
physicians at our university, ranging from radiology,
neurosurgery, family medicine, and emergency medicine. Using
well-defined tasks, we would now like to test our system with
these individuals and also with the good-sized population of
medical students they educate. Finally, a second possible user
group for our framework are medical coding personnel who work
in the hospital billing office to translate medical records to ICD9
code. Our sunburst display has good potential for them to better
recognize relationships in medical services and so perform more
accurate billing statements. We are currently pursuing efforts on
this level as well.
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Engaging Clinicians in the Visualization Design Process — Is It Possible?
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ABSTRACT

Creating and customizing visualization for electronic health
record data requires a close collaboration with clinicians, to
understand their tasks, needs and mental model. This process can
develop into an infinite process. Taking into consideration the
existence of clinicians with advanced IT knowledge, but not
programmers, we focus on engaging them to create their own
visualizations. This paper presents how clinicians can use uVis
Studio to create three visualizations by dragging and dropping
controls into the design panel, and specifying formulas for each
control in the property grid.

KEYWORDS: Visualization Tool, Spreadsheet Formulas,
Development Environment, Design Process, Health Care.

INDEX TERMS: H.5.2. [Information Interfaces & Presentation]:
User Interfaces — Graphical User Interfaces (GUI)

1 INTRODUCTION

Healthcare systems provide a huge amount of data and the
challenge of presenting these data is present. Clinicians need easy
and intuitive presentations that fulfill their tasks and needs based
on their experience and knowledge [7]. Most of EHR systems use
more table or text based presentation rather than visualization
techniques. Innovative visualizations like LifeLines [9], TimeLine
[3], etc. provide a better presentation. These visualizations have
been developed in close collaboration between developers and
clinicians who have the domain knowledge. Creating and
customizing advanced visualizations need programming skills and
considerable time.

Although several visualizations have been developed for
clinical data, there is a need for more novel and customizable
visualizations [3]. Clinicians need presentations which are easy to
understand and to access the right information [3]. Furthermore,
the visualization has to match the mental model of the clinician.
To overcome this challenge, it is recommended that clinicians are
involved during the development process of a user interface or
visualization [7]. Applying user-centered design may resolve
these issues, but still questions like: “What about the clinicians
that did not participate in the design process? Are the
representatives a good sample, to conclude to the right
visualization?”. Furthermore, is the same visualization sufficient
for the same department but in different hospitals ? Answering
these questions raises several challenges which are also closely
related with the available time, budget and resources used.

Using user-centered design does not solve the problem of
customizability; adjusting an existing visualization to clinician
needs. For instance, different departments or different hospitals
have different needs. Different clinicians perform the same tasks
in different ways, because of different experiences, knowledge
and so forth. The same visualizations can be integrated in
different departments or used by different clinicians, but to
achieve better user satisfaction some changes may be needed.
Furthermore, there is a need for more customizable visualizations
to fulfill users’ needs [3], and more tools which can support this
customizability.

Nowadays, some clinicians have gained advanced IT skills,
starting from simple browsing through web-applications to more
advanced applications, such as MS Excel or MS Access. For
instance at Bispebjerg hospital in Copenhagen, Denmark, a
department uses a system developed in MS Access by one of the
clinicians. We believe that in the healthcare environment there are
a considerable number of such clinicians with advanced IT
knowledge. So, with proper training, engaging clinicians in the
process of developing their own visualizations using a specialized
development environment will increase even more the possibility
of developing successful visualizations for clinical data.

We present uVis, a formula-based visualization tool for
clinicians. This tool provides clinicians with a development
environment (uVis Studio) to design their visualizations.
Clinicians with advanced spreadsheet level knowledge and
familiar with basic database concepts can design visualization by
dragging and dropping controls into the design panel. Next,
specifying simple and advanced formulas in the property grid,
they can bind controls to data and specify controls properties such
as color, height, width, etc. The uVis Studio provides the basic
features a development environment has, and more specialized
ones such as data related intellisense and a design panel which
shows visualizations as it would look to the end-users, described
in the next sections. Finally, clinicians without IT experience can
collaborate with IT experienced clinicians to create visualizations
and use them as well.

2 RELATED WORK

21 Visualizations in healthcare

One of the most well-known visualizations in healthcare is the
LifeLines [9]. It presents the history of a patient’s medical record
and it was designed in close collaboration with clinicians initially,
and later with a cardiologist. This presentation uses the timeline
metaphor, data presented in facets, color coding and size coding.
The evaluation showed that the Lifelines was more
understandable and that clinicians responded faster than the
traditional presentations. This visualization was developed in
Java, and customizing it requires advanced programming skills.
The TimeLine system by Bui et. al. visualizes problem-centric
patient data [3]. Their study showed that clinicians need more
flexible visualizations which fulfill their needs and tasks. A need
for more flexible visualization and customizable by clinicians is
raised by An et. al. [1]. An integrated viewer for EHR was
developed with basic visualization techniques, where clinicians
were able to hide and show visualizations but not customize them
to their needs.

Although, several previous research projects have concluded
that there is a need for more customizable visualizations in
healthcare, to our knowledge there is no previous research
addressing this problem or engaging clinicians directly in the
development process.

2.2 Visualization tools

We investigated some popular tools in the market for non-
programmers mainly used in the business area. MS Excel [8]
provides a user-friendly interface where built-in visualizations can
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be created with few steps. However, this tool provides a limited
number of visualizations which are not fully customizable. For
instance, graph colors cannot reflect data values. Furthermore,
users cannot create new visualization types and integrate them
into MS Excel. Finally, due to the amount and structure of data in
an EHR system, clinicians may encounter difficulties in creating
meaningful visualizations with MS Excel. Other visualization
tools such as Spotfire [10] and Tableau [11] are more specialized
in data visualization and provide a larger variety of visualizations.
Nevertheless, these tools do not support users to create and
customize advanced visualizations, such as LifeLines. User
creativity is restricted to the pre-designed views. Furthermore,
creating appropriate visualizations with Tableau or Spotfire needs
some advanced knowledge on how to create visualizations.

In academia, there are several visualization toolkits [2, 5, 6]
for programmers. Programmers can create and customize
visualizations by means of programming. Unfortunately, this
approach is too complex for users with advanced spreadsheet-like
knowledge, such as clinicians. Most of these toolkits miss an
integrated development environment. Usually, they can be
integrated in  general-purpose  integrated  development
environments (IDE) such as Visual Studio, Eclipse, etc., but still
is not enough for non-programmers. A specialized IDE should
support users in creating and customizing visualizations by means
of simple actions such as drag-and-drop.

3 SOLUTION

Previous research [1, 3] has been using user-centric design where
clinicians had a close collaboration with the developer. We
propose a different approach on developing visualizations for
healthcare data: allow clinicians with advanced IT knowledge to
create and customize their own visualizations using uVis.

uVis Studio (figure 2) is the development environment of uVis
and contains six work areas. Toolbox lists the available controls,
and supports drag-and-drop. Design Panel shows the visualization
as it would look to the end-user. This panel is updated every time
a control is dragged-dropped or a control property is changed.
Hence, the user sees exactly the same screen in development
mode as well as in end-user mode. Property-Grid is the area
where a user can type the formulas. We integrated the intellisense
feature in the Property-Grid to reduce typing errors and
misunderstandings. Furthermore, the intellisense assists clinicians
with suggestion related to control properties, tables and table
fields. Solution Explorer is the area where project files are listed.
The clinician can create a new project by adding a visualization
mapping document (.vism) and a visualization file (.vis). Vism
files contain information regarding the database the user is using,
the tables, etc. The Vis file contains the visualization
specifications. Design Modes allows the user to choose the mode
for viewing and interacting with visualizations in the design panel.
For instance, the user can select the mode InteractionMode, which
deactivates event handlers attached to the visualization in the
development environment. Data  Map, currently under
development, provides a visual overview of tables, fields and
relationships in the database the user is using. It resembles an
entity relationship (ER) diagram.

In the remainder of this section, we present three scenarios,
three visualizations and elaborate on how they were created by the
author.

3.1 Scenario 1: Simple LabResults visualization

In one of the clinics at Copenhagen Hospital, clinicians use the
VistA EHR system. For each patient that comes in the clinic, they

Laboratory Results -All Tests By Date - All Results

Patient: Berggren Nancy Ann (CPR: 2512484916)

Provesvar fra: BH Bispebjery Hospital Provestatus: K

Provetagningstidspunkt: 2Z-01-2010 10:36 Svar afsendt senest: 22-01-2010 03:00
[Svar oprettet i Visth: 26-02-2010 14:57 - r opdateret i Vistd: 26-02-2010 14:57

Analysensim
P-Humen immundefektvirus 1+2{antistof+hg)
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Referencekommentar
o
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P-Human immundefektvirus 1+2 ( antistof+Ag)
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Figure 1. a) Current presentation at the clinic and b) a
potential solution for presenting patient Lab Results.

have to check the lab results of the patient. Figure 1.a presents a
screenshot of the presentation of a patient lab result that clinicians
use, and our simple solution using uVis in figure 1.b. Clinicians
have to go through all the cumbersome texts for more than one lab
test and find the important information for the patient. The lab test
has a positive or negative result. A simple overview of the current
state of the patient is missing. In the early phase of our research,
we collaborated with clinicians who identified three important
variables (date, result and lab name) in the texts, which are used in
our visualization created using uVis Studio. Our approach is
trying to minimize this collaboration and empower the clinicians
to create their visualization.

Preconditions: uVis can visualize only relational data at the
moment, for instance data in MS Access. The Vism file has to be
created the first time by the database manager, unless the clinician
who will use uVis studio has good database knowledge.
Furthermore, an introduction of how the studio works and how to
use formulas is necessary for clinicians.

3.1.1 Using uVis Studio

Figure 2 shows a screenshot of the studio, containing a simple
visualization for the lab results, and some of the steps clinicians
have to follow. The clinician opens the uVis Studio and selects the
Vism file using the explorer. The default Vis file is opened in the
design panel. In our case it will be an empty form.

Clinicians can drag and drop controls (e.g. panel, label, textbox,
etc.) in the design panel. Furthermore, they can resize the controls
and move them around the design panel. For each control they
specify simple and advanced formulas for control properties in the
property grid. Every change done in the property grid reflects on
real-time on the design panel. Unlike other development
environment, uVis Studio shows the form exactly as it will be
shown at the end-user outside Studio. Clinicians use the property
grid to specify the formulas. Intellisense feature helps them to
write the correct formulas. For instance, clinician starts typing
“cli” in the DataSource property and a list of suggestions will pop-
up with name of tables, table fields, controls and control
properties that contain “cli”.

3.1.2 Key Principles of uVis Kernel

In this section we present some of the key principles of uVis
Kernel which are used in creating the LabResult visualization,
Figure 2.

Controls: Visualizations are created by combining .Net
controls, simple shapes (e.g. triangle) and several special uVis
controls (e.g. timescale). A control can be bound to data that
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Figure 2. Creating LabResults overview with uVis Studio.

makes it repeat itself. A control has a number of properties that
specify its appearance and its behavior.

Formulas: Control properties can be specified by spreadsheet-
like formulas. The formula specifies how to compute a property
value for a control. A formula can refer to data in the database,
control properties. uVis kernel computes the formulas for each
control, and sets the property values accordingly.

Bind control to data: Each control may have a data source that
binds it to data rows. To define the data source, in this case the
clinician specifies the DataSource, the uVis property of the
control. The clinician writes a formula which represents an SQL
statement. uVis kernel translates the DataSource formula into an
SQL statement, retrieves data from the database and generates the
corresponding record set. Next, the control creates one control for
each row in the record set. Each control is bound to a row in the
record set.

To create the visualization showed in figure 2, we used only
two tables from our EHR database: ClientTable and ClinicalData.
Each patient may have one or more clinical data. For instance in
Figure 2, the patient is tested three times for P-Human
immundefektvirus 1+2.

The clinician specifies the DataSource of panel PanelLab as
follows:

ClientTable where CivilRegistrationNumber =

TextBoxCPR!Text

ClientTable refers to a table in the data model and
CivilRegistrationNumber is a field in table ClientTable. The dot (.)
operator allows the clinician to access a table field. TextBoxCPR is
the control of type TextBox that shows the patient civil registration
number (CPR). The operator ! allows the user to access a control
property. Thus, TextBoxCPR!Text is the current patient’s CPR. As
a result, the data source of Panellab is the patient record whose

civil registration number is specified in TextBoxCPR. As a result,
uVis kernel creates one PanelLab control.

To show the lab tests of a patient, the user drags and drops a
panel (PanelTest) inside Panellab and specifies the DataSource of
PanelTest as follows:

Parent -< ClinicalData.

Parent means the data parent of PanelTest, in this case
Panellab. The operator -< allows us to navigate from one row to
multiple rows. Therefore, we navigate from the parent row (the
ClientTable row) to the related ClinicalData rows. This allows us
to access the lab tests of the patient. uVis kernel automatically
detects the tables and table fields used in the formulas. Next, uVis
Kernel translates the formula to an SQL statement, which is
executed and a record set is created. In this case the record set
contains three rows. Clinicians are not involved in this process,
apart from the fact that they need to specify the correct formula in
the property grid.

3.2 Scenario 2: Advanced LabResults visualization

We present in addition lab tests with numerical value as results.
Instead of going through the text, clinicians can create or
customize the first version of Lab Results Overview and present
numerical lab tests as shown in Figure 3.

Following the same principles presented before, the clinician
can bind controls to data. PanelTestScale presents visually the
lowest and highest value this test may have in theory. However, in
this case one of the test result was higher than 10. In this
presentation, the clinician can spot it out easily, compared to the
text based presentation. To align LblResultLine to PanelTestScale
clinician specifies the Left property to:

PanelTestScale!Left
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Figure 3. LabResults Overview using uVis Studio

To calculate the width of the LblResultLine, the clinician
specifies this formula for the width property:

PanelTestScale!Width * Me.MeasurementValue /

(Me.ValueHigh - Me.ValuelLow).

Me is used to refer to the current instance, which is bound to a
row. Using the dot operator we can navigate to a specific field of
this row (MeasuremnetValue, ValueHigh and ValueLow in our
case).

3.3  Scenario 3: LabResults using LifeLines

In the last scenario, the clinician creates a simple LifeLines
visualization for some of the lab tests, shown in figure 4.

The clinician follows the same steps as before to bind controls
to data. The difference in this case is the Timescale control, which
is a uVis control. The clinician defines the period shown in the
timescale by specifying the BorderValues to:

#2011-08-01#, #2011-09-01#

Clinicians can interact with the TimeScale control, moving the
date backwards or forwards. To align the LblLabResult the
clinician specifies the left position to:

TimeScaleLab!HPos (me.TransDate).

HPos is a special function in the timescale which translate date
to pixels.

4 DiscussiON

Nowadays, computers are part of our daily and working life.
More and more users are using computers to facilitate their
working process. Starting from simple usage (such as checking
emails, browsing web application), users, especially the new
generation, are moving towards a Dbetter and broader
understanding of how to utilize computers in daily work. The real
case in Copenhagen Hospital, where a clinician developed an
application in MS Access, confirms this tendency. Although
several visualization tools exist, there is a need for new tools
which provide a development environment for clinicians with
advanced IT knowledge, but not programmers. Such a tool will
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Figure 4. Simple LifeLines visualization using uVis Studio

facilitate the development process, allowing clinicians to create
and customize their own visualization based on the department
needs or their mental model.

In this paper, we present an on-going research project, which
focuses on engaging clinicians in developing simple and advanced
visualization using spreadsheet-like formulas. The spreadsheet
formulas have proven to be successful approach among users and
programmers [4]. Furthermore, by means of the development
environment, clinicians can customize their visualization and
adjust them to fulfill their needs.

The abovementioned visualizations were created by the author
who has a good understanding of uVis Studio and formula
principles, but is not a clinician. A more in depth evaluation with
real clinicians is needed, and we are planning to conduct it in the
future. The evaluation will show if our approach is adequate and
if it is possible to engage clinicians in the visualization design
process.

Now, we are focusing on making uVis Studio more stable. Data
Map is being developed and simpler and advanced controls are
being developed. A more specialized error messaging system for
clinicians is being developed.

5 CONCLUSION

In this paper we presented a new visualization tool for clinicians.
Clinicians can create and customize visualizations by means of
iteratively dragging and dropping controls and specifying
spreadsheet-like formulas. Although, three visualizations for lab
results were developed, we plan to conduct an evaluation with real
clinicians. To conclude, in this paper we present a first attempt to
engage clinicians more and allow them to visualize the data in
their own way.
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Outflow: Visualizing Patient Flow by Symptoms and Outcome
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Fig. 1. Outflow aggregates temporal event data from a cohort of patients and visualizes alternative clinical pathways using color-coded
edges that map to patient outcome. Interactive capabilities allow users to explore the data and uncover insights.

Abstract—Electronic Medical Record (EMR) databases contain a large amount of temporal events such as diagnosis dates for
various symptoms. Analyzing disease progression pathways in terms of these observed events can provide important insights into
how diseases evolve over time. Moreover, connecting these pathways to the eventual outcomes of the corresponding patients can
help clinicians understand how certain progression paths may lead to better or worse outcomes. In this paper, we describe the
Outflow visualization technique, designed to summarize temporal event data that has been extracted from the EMRs of a cohort of
patients. We include sample analyses to show examples of the insights that can be learned from this visualization.

Index Terms—Outflow, Information Visualization, Temporal Event Sequences, State Diagram, State Transition

1 INTRODUCTION

Electronic medical records (EMRs) are proliferating throughout the
healthcare system. At major medical institutions such as hospitals
and large medical groups, these computer-based systems contain vast
amounts of historical patient data complete with patient profile in-
formation, structured observational data such as diagnosis codes and
medications, as well as unstructured physician notes. The informa-
tion in these enormous databases can be useful in guiding the diagno-
sis of incoming patients or in clinical studies of a disease. However,
the vast amount of information can be overwhelming and makes these
datasets difficult to analyze. In particular, EMR databases contain a
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large amount of temporal disease events such as diagnosis dates and
the onset dates for various symptoms. Analyzing disease progression
pathways in terms of these observed events can provide important in-
sights into how diseases evolve over time. Moreover, connecting these
pathways to the eventual outcomes of the corresponding patients can
help clinicians understand how certain progression paths may lead to
better or worse outcomes.

In this paper, we describe the Outflow visualization technique. Out-
flow is designed to summarize temporal event data that has been ex-
tracted from the EMRs of a cohort of patients. We present a novel
interactive visual design which combines multiple patient records into
a graph-based visual presentation. Users can manipulate the visualiza-
tion through direct interaction techniques (e.g., selection and brushing)
and a series of control widgets. The interactions allow users to explore
the data in search of insights. Throughout the paper we describe Out-
flow using a motivating problem related to the diagnosis of congestive
heart failure. We include two sample analyses to show examples of the
insights that can be learned from this visualization.

The rest of the paper are organized as follows. We describe our
motivating problem in Section 2 and review related work in Section 3.
We explain the design of Outflow in Section 4 and demonstrate pre-
liminary analyses in Section 5. The paper concludes in Section 6.
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Fig. 2. Multiple medical records are aggregated into a representation
called an Outflow graph. This structure is a directed acyclic graph (DAG)
that captures the various event sequences that led to the alignment point
and all the sequences that occurred after the alignment point. Aggregate
patient statistics are then anchored to the graph to describe specific
patient subpopulations.

2 MOTIVATING PROBLEM

Congestive heart failure (CHF) is generally defined as the inability
of the heart to supply sufficient blood flow to meet the needs of the
body. CHF is a common, costly, and potentially deadly condition that
afflicts roughly 2% of adults in developed countries with rates growing
to 6-10% for those over 65 years of age [12]. The disease is difficult
to manage and no system of diagnostic criteria has been universally
accepted as the gold standard.

One commonly used system comes from the Framingham
study [11]. This system requires the simultaneous presence of at least
two major symptoms (e.g., S3 gallop, Acute pulmonary edema, Car-
diomegaly) or one major symptom in conjunction with two minor
symptoms (e.g., Nocturnal cough, Pleural effusion, Hepatomegaly).
In total, 18 distinct Framingham symptoms have been defined.

While these symptoms are used regularly to diagnose CHF, our
medical collaborators are interested in understanding how the various
symptoms and their order of onset correlate with patient outcome. To
examine this problem, we were given access to an anonymized dataset
of 6,328 patient records. Each patient record includes timestamped en-
tries for each time a patient was diagnosed with a Framingham symp-
tom. For example:

Patient#1:(27 Jul 2009, Ankle edemay), (14 Aug 2009, Pleural effusion), ...
Patient#2:(17 May 2002, S3 gallop), (1 Feb 2003, Cardiomegaly), ...

In line with the use of Framingham symptoms for diagnosis, we as-
sume that once a symptom has been observed it applies perpetually.
We therefore filter the event sequences for each patient to select only
the first occurrence of a given symptom type. The filtered event se-
quences describe the flow for each patient through different disease
states. For example, a filtered event sequence symptom A — symp-
tom B indicates that the patient’s flow is no symptom — symptom A
— symptoms A and B. The data also has an outcome for each patient
(dead (0) or alive (1)).

Our analysis task, therefore, is to examine aggregated statistics for
the flows of many patients to find common disease states and transi-
tions between states. In addition, we wish to discover any correlations
between these paths and patient outcome.

3 RELATED WORK
3.1 Temporal Event Sequence Visualizations

Many researchers have explored visualization techniques for temporal
event sequences. In the early years, many systems focused on visual-
izing a single record [1, 2, 6, 8, 9, 16]. The most common approach
is to place the events on a horizontal timeline according to the time
that events occurred. Later, attention shifted towards visualizing mul-
tiple records in parallel. One popular technique is to stack instances

Past NOW Future .
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Fig. 3. Outflow visually encodes nodes in the Outflow graph using rect-
angles while edges are represented using two distinct visual marks: time
edges and link edges. Color is used to encode average outcome.

of single-record visualizations and to provide additional functionality
for searching [7, 21, 22, 23, 26], filtering [23], and grouping [5, 14].
However, these approaches do not aggregate nor provide any abstrac-
tion of multiple event sequences. Most recently, a technique called
LifeFlow [25] introduced a way to aggregate and provide an abstrac-
tion for multiple event sequences. However, LifeFlow’s aggregation
combines multiple event sequences into a tree, while Outflow’s aggre-
gation combines multiple event sequences into a graph.

3.2 State Diagram Visualizations

Our approach aggregates event sequences into an Outflow graph which
is analogous to a state diagram [4] or state transition graph. State di-
agrams are used in computer science and related fields to represent a
system of states and state changes. State diagrams are generally dis-
played as simple node-link diagrams where each state is depicted as
a node and transitions are drawn as links [3]. Many visualizations of
state diagrams have been developed [3, 17, 18, 20, 24]. These typically
focus on multivariate graphs where a number of attributes are associ-
ated with every node. Some support exploration of sequences of three
or more states. Variants on traditional state diagrams have also been
explored, such as Petri nets (also known as a place/transition net or
P/T net) [13] which offer a graphical notation for stepwise processes
that include choice, iteration, and concurrent execution. However, to
the best of our knowledge, these approaches do not display or allow
easy comparison of the transition time, which is one of Outflow’s de-
sign goals.

3.3 Flow & Parallel Coordinates Visualizations

Another group of visualizations called Sankey Diagrams [19] was de-
signed to visualize flow quantities in process systems. However, they
only focus on displaying the proportion of the flow that splits in differ-
ent ways, without temporal information. The visual display of Outflow
also looks similar to parallel coordinates [10], but the underlying data
types are different. Parallel coordinates are used for categorical data
while Outflow was designed for temporal event sequences.

4 DESCRIPTION OF THE VISUALIZATION
4.1 Data Aggregation

The first step in Outflow is data aggregation. We begin by selecting
an alignment point. For example, we can align a set of patient event
sequences around a state where all patients have the same three symp-
toms A, B and C and no other symptoms. After choosing an alignment
point, we construct an Outflow graph (Figure 2) using data from all
patients that satisfy the alignment point.
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The Outflow graph is a state diagram represented using a directed
acyclic graph (DAG). The states are the unique combinations of symp-
toms that were observed in the data. Edges capture symptom transi-
tions. Each edge is annotated with the number of patients that make
the corresponding transition, the average time gap between the states,
and the average outcome of the patient group.

Therefore, the Outflow graph captures all event paths that led to the
alignment point and all event paths that occur after the alignment point.
Our prototype implementation lets users select a target patient from
the database and uses the target patient’s current state as the align-
ment point. This approach allows for the analysis of historical data
when considering the possible future progression of symptoms for the
selected target patient.

4.2 Visual Encoding

Based on the information contained in the Outflow graph, we have de-
signed a rich visual encoding that displays (a) the time gap for each
state change, (b) the cardinality of patients in each state and state tran-
sition, and (c) the average patient outcome for each state and transi-
tion. Drawing on prior work from FlowMap [15] and LifeFlow [25],
we developed the visual encoding shown in Figure 3.

Node (State): Each node is represented by a rectangle which has
its height proportional to the number of patients.

Layer: We slice the graph vertically into layers. Layer i contains all
Outflow graph nodes with i symptoms. The layers are sorted from left
to right, showing information from the past to the future. For example,
in Figure 1, the first layer (layer 0) contains only one node, which
represents patients that have no symptom. The next layer (layer 1) has
five nodes, one for each first-occurring symptom in the patient cohort.

Edge (Transition): Each edge is displayed using two visual marks:
a time edge and a link edge. Time edges are rectangles that whose
width is proportional to the average time gap of the transition and
height is proportional to the number of patients. Link edges connect
nodes and time edges to convey sequentiality.

End Node: Each patient’s path can stop in a different state. We use
a trapezoid followed by a circle to mark these points. The height of the
trapezoid is proportional to the number of patients whose path stops at
a given point.

Color-coding: Colors assigned to edges and end nodes are used to
encode the average outcome for the corresponding set of patients. The
color scales linearly from red to green with red representing the worst
and green representing the best outcomes.

4.3 Interactions

To allow interactive data exploration, we further designed Outflow to
support the following user interaction capabilities.

Panning & Zooming: Users can pan and zoom to uncover detailed
structure.

Filtering: Users can filter both nodes and edges based on the the
number of associated patients to remove small subgroups.

Symptom Selection: Users can select which symptom types are
used to construct the Outflow graph. This allows, for instance, for the
omission of symptoms that users deem uninteresting. For example,
a user can remove Nocturnal Cough if they deem it irrelevant to an
analysis and the visualization will be recomputed dynamically.

Brushing: Hovering the mouse over a node or an edge will high-
light all paths traveled by patients passing through the corresponding
point in the outflow graph (see Figure 4).

Tooltips: Hovering also triggers the display of tooltips which pro-
vide more information about individual nodes and edges. Tooltips
shows all symptoms associated with the corresponding node/edge, the
average outcome, and the total number of patients in the subgroup (see
Figure 4).

5 PRELIMINARY ANALYSIS

We have integrated the Outflow visualization technique into a proto-
type decision support system for CHF patients called PrognoSim. This
system uses a patient similarity-based approach to provide medical in-
telligence. PrognoSim is a web-based application written using Java’s

J2EE platform and Apache Tomcat as the application server environ-
ment. The PrognoSim user interface is rendered using HTML and
JavaScript. Dojo is used for traditional user interface widgets. The
Outflow visualization component is rendered on an HTML 5 canvas
via a scenegraph-based JavaScript visualization library named CVL.

We used Outflow within PrognoSim to view the evolution over time
for a cohort of CHF patients similar to a clinician’s current patient.
Our initial analysis illuminates a number of interesting findings and
highlights that various types of patients evolve differently. We share
two such evolution patterns as examples of the type of analysis that
can be performed using the Outflow technique.

Leading Indicators. In several scenarios, patient outcome is
strongly correlated with certain leading indicators. For example, con-
sider the patient cohort visualized in Figure 1. The strong red and
green colors assigned to the first layer of edges in the visualization
shows that the eventual outcome for patients in this cohort is strongly
correlated with the very first symptom to appear. Similarly, the strong
red and green colors assigned to the first layer of edges after the align-
ment point show that the next symptom to appear may be critical in
determining patient outcome.

Progressive Complications. In contrast to the prior example,
which showed strong outcome correlation with specific paths, the pa-
tient cohort in Figure 5 exhibits very different characteristics. At each
time step, the outcomes across the different edges are relatively equal.
However, the outcomes transition from green to red when moving left
to right across the visualization. This implies that for this group of
patients, no individual path is especially problematic historically. In-
stead, a general increase in co-occurring symptoms over time is the
primary risk factor.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a novel visualization called Outflow that sum-
marizes temporal event data extracted from multiple patient medical
records to show aggregate disease evolution statistics for a cohort of
patients. We described our motivating problem in the study of conges-
tive heart failure and presented the main visual design concepts behind
our visualization. We also described a number of interactive features
in Outflow that allow more sophisticated analyses. Finally, we briefly
shared two example analysis results which highlight some of the capa-
bilities of our approach.

Due to these early promising results, we plan to continue work on
this topic in the future. We believe that there are many promising direc-
tions to explore including integration with forecasting/prediction algo-
rithms, the use of more sophisticated similarity measures, and deeper
evaluation studies with practitioners. Moreover, the flexibility of Out-
flow’s design means it can be used beyond our motivating problem
and can be useful for a range of medical (and non-medical) problems
which involve temporal event data.
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ABSTRACT

We describe our recent work with star glyph data visualization
methods applied to clinical data derived from National Institutes
of Health (NIH) clinical research protocols and we suggest a
crowdsourcing approach for developing data visualization and
computational intelligent software to mine data and discover new
knowledge using clinical research data available through the NIH
Biomedical Translational Medicine Informatics System (BTRIS).
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knowledge data discovery, parallel coordinates, star glyphs,
software standards, radial plots.
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1 INTRODUCTION

Data visualization methods can help us see and understand
relationships in large multifactorial data arrays. They can also
assist us in detecting patterns and anomalies not obvious with
other forms of data representation. Data visualization methods are
becoming increasingly popular for data exploration, data mining,
information retrieval, and hypotheses suggestion in many different
subject matter domains.

Our interest in data visualization has grown from our work in
applying data visualization methods (particularly star glyphs and
interactive parallel coordinates) to NIH clinical research protocol
data. We believe these methods have good potential for catalyzing
new medical knowledge insights and for producing informative
data patterns that suggest hypotheses worthy of exploring. We
now want to develop production quality software with good
graphical user interfaces and good interfaces to archived data
sources in order to expand our data visualization work and to
provide extended computational support for biomedical

National Institutes of Health Clinical Center
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E-mail: jdeleo@nih.gov

researchers. We are in an ideal position at the NIH to develop and
showcase this kind of software and to put it into practical use in
supporting many of the more than a thousand clinical research
protocols active here.

When star glyphs and other data visualization methods are made
available in standardized, well-documented, easy-to-use readily-
available software they should become important tools for gaining
new insights and knowledge in medicine and other disciplines.

Here we show some of our current work in applying star glyph
data visualization methods to clinical research data derived from
NIH clinical research protocols. We also suggest a crowdsourcing
approach to develop data visualization and computational
intelligent software to mine data and discover new knowledge by
using the clinical research protocol data available through the NIH
Biomedical Translational Medicine Informatics System (BTRIS).

2 STARGLYPHBASICS

Glyphs represent data values as shapes, textures and color
attributes of graphical symbols [1, 2]. Many glyph representations
have been proposed over the years including star glyphs [3],
Andrews glyphs, [4], Chernoff faces [5], stick figure icons [6],
shape coding [7] and DeLeo’s star glyph movies [8]. Star glyphs
(also known as radial plots) represent data values in the form of a
star. Figure 1 illustrates a basic coordinate system frame for
constructing a star glyph. This coordinate system indicates that
there will be 20 variables plotted and that each variable will be
scaled to the 0-1 interval and plotted on one of the spokes (rays)
in the star glyph frame. Note that 0 corresponds to the center of
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Figure 1. A coordinate system frame for constructing star glyphs.

the figure and 1 corresponds to the end of a spoke. The variables
can be comprised of any mix of continuous and categorical
variables. Any reasonable number of variables can be plotted.
The ordering of the valuables is arbitrary and may be selected
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according to attributes peculiar to the specific kind of data being
plotted. There are many alternative ways to scale data onto the 0-1
as will be discussed below.

3 OUREXPERIENCE WITH STAR GLYPHS
Here we present examples of the work we have been doing with
star glyphs in clinical medicine applications.

3.1 Clinical Laboratory Data

Each of the two star glyph examples in Figure 2 show twenty
serum derived analyte (chemical constituent) data values each
plotted on one spoke or ray of the star.

Kidney Disease Liver Disease

Drata courtesy Drs. Alan Remaley & Manuel van Deventer
Graphic illustrations courtesy Carl Leonard & Jim Deleo

Figure 2. Star glyph plots of serum analyte values associated with
a patient with kidney disease (left) and a patient with liver disease
(right) with below reference values plotted in inner blue band,
normal reference range values in the middle green band and high
reference range values in the outer red band. The outer analyte
identifier circles are color coded to indicate in which of the three
bands the individual analyte values fall. (Note: rings are .1 apart.)

The serum analyte values represented in Figure 2 were derived
from serum samples drawn from two different patients and
produced by an clinical chemistry automated analyzer in the NIH
Clinical Center Department of Laboratory Medicine and made
available by Alan Remaley, MD, PhD. In this figure each analyte
value is scaled on the 0-1 interval and plotted on its designated ray
with 0 corresponding to the center of the plot and 1 corresponding
to the end of the ray. The scaling transformation was designed to
emphasize values falling outside the normal reference ranges and
to compress scaled analyte values that fall within the normal
reference range inside the .4 to .6 interval (the green middle
band). After the scaled data values are plotted, adjacent points are
connected to form a star-like pattern i.e. a “star glyph.” One
obvious advantage of the star glyph is that it gives an immediate
visual impression of multifactorial data — an impression that is
more readily perceived and understood by the human viewer than
a list of numbers on a computer screen or on a printed page. It
also shows distinct patterns that are more recognizable than those
obtained with more traditional data plots. For example the analyte
value differences between the kidney and liver diseased patients
are immediately obvious when looking at Figure 2. Thus star
glyphs can be used to suggest diagnoses and classes. [8]

3.2 Sweat Patch Data

According to NIMH researchers, skin patch tests can detect
abnormal levels of markers for neural and immune function in the
sweat of patients with histories of depression. If confirmed, this
non-invasive technique could become an easier alternative to

blood tests for predicting risk for inflammatory disorders, such as
metabolic syndrome, cardiovascular disease, osteoporosis, and
diabetes, which often occur with depression [9]. Figure 3 shows
star glyphs constructed with sweat patch data provided by NIMH
researchers Esther Sternberg, MD and Marni Silverman, PhD. The
data represent protein analyte values measured from sweat patches
that had been worn for 24 hours by two different women, one
healthy and the other diagnosed as depressed. The third smaller
one in the upper middle is considered unknown. Perhaps in time
clinicians could use star glyphs like this to suggest diagnoses and
to recognize disease and syndrome subtypes.
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Figure 3. Star glyphs representing protein analyte value markers
for neural and immune function found in the sweat of two women,
one healthy (left) and one diagnosed as depressed (right).

3.3 Corticobasal Syndrome Subtyping

Corticobasal Syndrome (CBS) is a neurodegenerative disorder
that has several associated major subgroups including.
Alzheimer’s Disease (AD), Corticobasal Degeneration (CBD),
Frontotemporal Dementia (FTD), Pick’s Disease (PD) and
Progressive Supranuclear Palsy (PSP). It is very difficult to
differentiate these subgroups in vivo, and currently pathological
diagnosis at autopsy is the gold standard. With Jordon Grafman,
PhD, NINDS we used star glyphs to plot examples of different
corticobasal syndrome patients for the purpose of gaining new
insights. The data were results from cognitive psychology test
scores. Examples are shown in Figure 4. [10]

Figure 4. Star glyph plots illustrating corticobasal syndrome
subtyping.
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3.4 Post Traumatic Stress Disorder (PTSD)

The Beck Depression Inventory (BDI, BDI-II), created by Dr.
Aaron T. Beck, is a 21-question multiple-choice (1 to 4) self-
report inventory, used for measuring the severity of depression. In
its present version the questionnaire is designed for individuals
aged 13 and over, and is composed of items relating to symptoms
of depression such as hopelessness and irritability, cognitions
such as guilt or feelings of being punished, as well as physical
symptoms such as fatigue, weight loss, and lack of interest in sex.
We propose the use of star glyphs to visualize individual patient
scores to illustrate depression as well as other psychological
subtypes as illustrated with fictional BDI data in Figure 5. We
have recently started a project in which we expect to apply this
idea to patients suffering with war inflicted brain injury and post
traumatic stress disorder. In this project we may be able to use our
experience with star glyph subtyping corticobasal syndrome
patients as just discussed. We are especially interested in patient
psychological subtyping as well as before and after observations
of the effects of holistic interventions. We plan to employ star
glyph movies (discussed next) as time-varying visual records of
patient wellness/illness status.

Figure 5. Star glyph with Depression Inventory data
4 STAR GLYPH MOVIES

In the examples in Section 3 above single star glyph images were
used to represent static data views of related multifactorial
parameter values - static because data displayed corresponds to a
single time point. In most subject matter domains such as
medicine, parameter values change dynamically in time. For
example, a patient’s serum analyte values will change over time in
response to disease and treatment processes as well as just
naturally in healthy states. We recently introduced the idea of
creating star glyph movies to visualize such dynamic changes in
data [8]. To do this, values of the parameters are collected at
different points in time. Consecutive time-tagged data sets are
then used to compute intermediate finer time-granularity star
glyphs by linearly interpolating each of the data elements in the
consecutive star glyph data values for equal time intervals. Then
linear-interpolated intermediate images associated with the same
subject at fixed time increments, e.g., per day, are computed. The
original and interpolated images are then strung together in a time
sequence and played out as a movie. Issues concerning how
many data sets and how fine the granularity are application
dependent and can be resolved over time with experience in
creating and attempting to get knowledge from these movies.

Again, scaling is an important issue here and can be optimized
also with experience. =~ We have developed software to
demonstrate star glyph movies and have demonstrated it with time
varying analyte values. Figure 6 shows an example of this with
star glyphs representing analyte values and the time dimension
indicated by means of the blue time-shadow images. Star glyph
movies provide time as another dimension for knowledge data
discovery. Star glyph movies could be made to illustrate serum
analyte values and psychological variables such as those in the
Beck Depression Inventory change over time. Side-by-side star
glyph movies of patient and normal volunteer subject data could
be displayed. The star glyph movies would likely demonstrate
rates and magnitudes of parameter value changes over the course
of compared treatments and may help to identify crucial time
windows that predict treatment successes and failures. Also many
diseases have flare periods followed by quiescent periods. Star
glyph movies may be useful in identifying flare periods as well as
the cyclical aspects of certain disease manifestations.

5 DATASCALING

Figure 6 shows scaling differences created by star glyph movie
shadow tracings. In the image on the left, the normal reference
range was scaled to the .4 to .6 interval. In the one on the right
the entire normal reference range was scaled to .5. There are many
ways to scale data, such as range scaling, sigmoid function
transformed z-score scaling and nonparametric (rank order)
scaling. Scaling selection must be application specific.

Figure 6. Shadow tracings of star glyph movies illustrating two
different scaling methods.

6 PRODUCTION SYSTEM DESIGN

We would like to build the production-quality data visualization
and computational intelligent system illustrated in Figure 7.

BTRIS SMART-MART™
Provides data views Provides application
to clients programs to clients

1_1 1_1
Client Computer

| Data views downloaded from BTRIS |

| Application programs downloaded from SMART-MART™ |

Figure 7. Production-quality system design for downloading data
views from BTRIS and application programs from SMART-
MART™
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The purpose of this system is to facilitate biomedical research by
making data views and application programs readily available to
biomedical researchers. The design depicted in Figure 7 shows
both data views and application programs downloaded into a
client’s computer. Having both data and application programs
resident in the client’s computer assures data confidentiality,
which is essential in data-sensitive applications such as medicine.
We refer to the application program server as SMART-MART™
which we envision to be a generally available web accessible
server containing a library of data visualization and other
computational tools provided by contributors by means of
crowdsourcing (discussed next) as an on-going process. For our
work at the NIH our client principle investigators would draw data
views from BTRIS and other sources. Interfaces to other data
repositories could also be developed.

7 CROWDSOURCING FOR SOFTWARE

We would like to use crowdsourcing to cooperatively develop the
production system just described. Crowdsourcing means to use an
open call to outsource to an undefined community (the "crowd”)
tasks that are traditionally performed by employees and
contractors. It includes contests, competitions and challenges. In
his book about crowdsourcing Jeff Howe suggests that it
potentially gathers the most fit with the most relevant and
innovative ideas to perform the required task [11]. Crowdsourcing
can yield contributions from amateurs and volunteers working in
their spare time, and from professional experts and small
businesses unknown to the initiating organization. Benefits of
crowdsourcing may include (1) activation of intrinsic motivating
incentives [12], (2) tapping a wider range of talent, (3) more
heterogeneous solutions, (4) quicker solutions at no cost or low
cost, (5) the crowd gets to feel brand-building kinship with the
crowdsourcer and with other crowd members and (6) reward in
the form of shared results may be sufficient. Our idea is that we
would be the crowdsourcer that provides detailed software design
documentation describing a set of data visualization tools starting
with star glyphs and that we would guide the crowdsourcing
process in developing production-grade software modules to be
made operational in the design concept illustrated in Figure 7. We
would like to use crowdsourcing in an on-going basis to
continually develop and refine a library of data visualization and
other computational intelligent tools to support biomedical data
mining and knowledge discovery in an on-going basis. We
propose starting with producing production-quality star glyph
software and having it work with BTRIS-provided data as the first
learning example.

8 THE AMERICA COMPETES ACT

It has been pointed out that crowdsourcing is not new. The term
was first coined by Jeff Howe in a June 2006 Wired magazine
article “The Rise of Crowdsourcing." Projects which made use of
group intelligence, such as the LazyWeb or Luis von Ahn's ESP
Game, predate the word “crowdsourcing” by manyl years. One
thing that is new however is that it is now possible for the federal
government to engage in crowdsourcing by virtue of the America
Competes Act. This Act was first signed into law on August 9,
2007. Its purpose is "to invest in innovation through research and
development, and to improve the competitiveness of the United
States." President Obama signed a revised version of the
“COMPETES Act” in January 2011. This version is specifically
designed to harness America’s scientific and technological
ingenuity and in particular, it identifies health care improvement,
better use of information technology and new product

development as specific objectives. The Act gives every federal
government department and agency the authority to conduct
contests, competitions and challenges — methods that have
demonstrated records of accomplishment for accelerating problem
solving by tapping top talent and expertise. Under the Act Federal
agencies may outline a problem they would like solved on
Challenge.gov. At the time of this writing the NIH Office of the
Director is establishing policy to ensure that NIH is compliant
with the COMPETES Act. Once this policy is in place we hope
to be able to advertise the crowdsourcing initiative just
described. Initial announcements will be made through the NIH
Biomedical Computing Interest Group (BCIG). To have your
name placed on the BCIG listserver list please contact Jim DeLeo
(first author) at e-mail address jdeleo@nih.gov.

9 SUMMARY

We have described our current work in applying star glyph data
visualization methods to NIH clinical research data and suggested
a crowdsourcing approach to develop data visualization and other
data mining software compatible with data in the NIH BTRIS
System. When such these methods are made available in standard,
easy-to-use and readily-available software packages they are
likely to become indispensible tools for gaining new insights and
new knowledge in medicine as well as in other disciplines.
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ABSTRACT

In this paper we describe PharmaForeCast, a new tool to improve
predictions of patient clinical outcomes based on assigning their ap-
propriate treatment subtype, which forms the basis of personalized
medicine. Our prototype allows physicians to rapidly visualize not
only the assignments of a conceptual black box algorithm for as-
signing patients to a treatment subgroup, but to also quickly assess
the uncertainty of all the individual laboratory assays and other clin-
ical information for determining the effect each of these potential
errors has in determining the treatment subtype. The importance of
this tool is providing physicians a way to effectively navigate the
large amount of laboratory and other clinical information as to en-
sure the accuracy of the final subtype assignment through human
quality control by an expert (the physician). Currently available
tools used to visualize personal medical information, such as assays
results or blood-typing, rarely allow for editing within the graphi-
cal user interface. Clustering accuracy can be significantly aided by
human interaction when data points are plotted. Furthermore, cur-
rent tools universally approach classification as a single-pass task,
which ignores the useful information that may be gained by a clin-
ician in an interactive analysis, in which which the clinician is able
to provide expert editing of questionable data to improve the accu-
racy of the final subtype. This interaction loop can be repeated mul-
tiple times over a patient’s lifetime. In this paper we describe the
need for such a tool, which allows for highly interactive manipula-
tions of personalized medical data using PharmaForeCast. Finally,
we mention future improvements to the tool that could be applied
in several subfields.

Keywords: Personalized Medicine, Visual Analytics, Quality As-
surance
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1 INTRODUCTION

Since the very earliest attempts to apply computers to simplify-
ing and automating the process of medical diagnosis it has been
clear that one of the primary benefits of this approach would be the
machine’s ability to aggregate, compare, and act on an immeasur-
ably larger volume of data than the human mind can assimilate. A
computer can digest an entire genome’s volume of data, and more,
and return to the end user a summary of the state of an individ-
ual, condensed into a few variables and predictions. When applied
in a medical context, such dimensional reduction can be incredi-
bly powerful, and incredibly useful. [10, 5, 9, 3] It can predict the
susceptibility of a person to disease, or identify those treatment op-
tions that are more likely, or less likely, to succeed — applications of
which are at the heart of modern medicine’s push for “Personalized
Medicine”.

Such dimensional reduction is, however, not without some peril.
It is an inherently lossy process, presenting the end user with less
information than was originally available, and condensing detailed
and nuanced networks of observations into flat assessments of fact.
This is not a defect of the approach, as it is exactly the result that is
desired, however, it produces the insidious side effect that the error
characteristics of the underlying data are completely disguised. The
end user of such diagnoses is left with, effectively, two choices: to
accept the results as valid regardless of the potential for error, or to
attempt to understand and check the potential errors, which requires
addressing the full dimensionality of the problem and negates many
of the benefits of the original dimensional reduction. In reality,
most clinical applications of this process fall somewhere between
these extremes, with users attempting to address the assumed most
likely sources of error, but in the end unable to universally address
every potential error factor in every case. This process is insidi-
ously problematic. While the drive towards personalized medicine
accents the necessity to focus on the individual’s specific disease
state, rather than on the average presentation of a disease, this diffi-
culty in dealing with potential errors results in error-checking being
biased towards re-checking the most prevalent errors in “the aver-
age disease”, rather than even the average presentation of a specific
disease. As a result, measurements that are well understood to be
frequently variable or erroneous, such as blood pressure or throat
swab tests, are almost certain to receive closer or repeat attention,
whether they are a relevant factor in a diagnosis or not. A measure-
ment that is not well understood as problematic is far less likely to
be reassessed, even if it is the largest contributor to the final result.

With PharmaForeCast we propose a Visual Analytics alternative
to these options, that both automates and employs a subtle vari-
ation on the current state of the art, to produce improved results.
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Figure 1: The PharmaForeCast prototype based on PandaSNP,
a genotype editing tool, with a typical clustering result before ed-
its. Axes correspond with strength of combined signasl along the
y-direction and percentage of a base type along the x-direction.
Icon/color types refer to the three allele combination types.

By engaging an iterative diagnostic updating scheme, PharmaFore-
Cast makes certain that the human expert user is informed of the
potential errors in the factors that have the largest influence on the
diagnostic prediction, and that the human expert has certified that
the evaluation of these factors is acceptable. This differs from the
automation of the current “check the factors most likely to con-
tain errors”. Instead, by utilizing the information contained in the
dimension-reducing “black box” that produces diagnoses, we can
highlight the factors that were critical in producing the diagnosis,
and direct the human expert’s attention towards the potential errors
that are most relevant to the diagnosis. If the expert updates any of
these assessments, the process can be repeated and, even if the most
relevant diagnostic factors change for the re-diagnosis, the user can
be iteratively presented with the information necessary to critically
assess the validity of the automated diagnosis.

Our prototype for this approach operates in the domain of phar-
macogenomics. Pharmacogenomics derives predictions about an
individual’s potential drug metabolism from specific features of
their genome, and uses this information to customize prescription
dosages. The features of an individual’s genome that might influ-
ence their metabolism of any specific drug however, are myriad,
therefore significant dimensional reduction is applied in produc-
ing these predictions. Commonly, potentially numerous genomic
SNP variants are used to predict the activity of several metabolic
steps, which are used to identify a particular drug dosage. Sev-
eral steps of dimensional reduction are applied. The practitioner
attempting to apply this process is left with a suggested dosage,
and perhaps some form of confidence score regarding the correct-
ness of the score, but is left without any convenient way to assess
which of the metabolic predictions might be causing reduced con-
fidence or increased error, and without any indication of whether
any of the genotype calls might be questionable, thereby induc-
ing uncertainty. A canonical example is the prediction of warfarin
metabolism, through examination of polymorphisms in the vita-
min K epoxide reductase complex subunit 1 (VKORC1) and cy-
tochrome P450 2C9 (CYP2C9) genes[8]. Because supplying a cor-
rect warfarin dose is time-critical, applying time-consuming direct-
sequencing approaches to this genotyping need is problematic. Kim
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Figure 2: Visual display of PharmaForeCast’s approach to data anal-
ysis. A strength of this visual analytic method is its assumption that
it will be working with clinicians to readdress errors or incoporate
later knowledge, while being able to work with current best clustering
and classification automated methods. Black-box classification algo-
rithms take a burden off clinicians, but at the same time PharmaFore-
Cast takes information from them on 'most vital’ data elements for
aiding users by visually emphasizing which elements actually need
to be reanalyzed.

et. al[7] approach this problem for warfarin dose optimization by
development of an “automated interpretive” application that evalu-
ates allele-specific real-time PCR data for four VKORC1 SNPs and
two CYP2C9 SNPs. These results can be produced in much less
time than the direct-sequencing approach. Neither approach how-
ever, eliminates the need for the practitioner to carefully consider
all of the possible errors in the genotyping — also a significantly
time-consuming process — before acting on the suggested dose. By
applying a PharmaForeCast technique, potential sources of error
that are not important for the projected diagnosis — for example a
SNP that has poor quality scores for its assignment, but is irrele-
vant to the metabolism at the prescribed dosage — can be eliminated
from further assay, and the practitioner’s attention focused on only
those sources of error that can affect the prediction.

2 DISCUSSION

Our prototype application of this methodology is a Visual Analyt-
ics approach to checking, and updating SNP genotype assignments
across a large number of genotypes for an individual. Because
genotype assignments are not without error, and multi-locus assays
of an individual’s genome almost ubiquitously require the type of
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dimensional reduction highlighted previously, fields that use this
data are in significant need of tools that allow rapid survey and
identification of the salient factors that require closer examination.
For pharmacogenomics, the question faced by the practitioner is
“given this individual’s genome, will this dosage be inadequate, ad-
equate, or too much?”. The decision must be reached by taking into
consideration the patient’s genotype information at anywhere from
one, to dozens, to — as the field develops — eventually hundreds of
different loci, many of which produce non-linear and conditional
contributions to the final answer. It is virtually impossible for the
practitioner to hold the complete model of these interactions in his
or her head, or to hold the complete model of the possible errors.
However, with as many as 3% of all genotype assignments requir-
ing manual curation despite adequate statistical sophistication, it is
a virtual requirement that the errors be addressed to maintain valid
results. Our tool, PharmaForeCast, informs the user of the spe-
cific genotypes that were most influential in making the decision
by providing a convenient visual survey of the quality of those as-
signments, and the extent to which each assignment affected the
dimensionally-reduced final result. If the quality in any of the crit-
ical genotypes is unacceptable, or the assignment requires correc-
tion, the user can update the assignment and reapply the prediction
to determine whether the result is the same or, if different, if any
of the critical genotypes for the new result are also questionable.
As shown in Figure 3, data points’ shapes are made grey during
reassessment if they are annotated as significant or otherwise color
coded to correspond with their respective sample groups.

We believe our tool can be expanded for use in further subfields.
There are many systems currently in use in medicine involving au-
tomated systems for clustering and classifying genetic and other
medical data, many revolving around artificial intelligence sub-
fields, such as evolutionary computation [12]. Unavoidably, these
tools have error rates, often in excess of 5% [6, 4, 11, 14, 1, 6]. Of
even greater concern is that the error rate is an average, with possi-
bly strong inconsistentcies across sets or individual trials [2]. This
means that not only are clinicians relying on incorrectly classified
or clustered data, but the misclassification is inconsistent, making
them harder to determine.

3 METHOD

The tool is meant to assist clinicians with personalized medicine
through the following process:

1. The initial analysis helps in avoiding obvious misassignments
or grossly ambiguous classifications.

2. The analysis data which will be used by the classifier for as-
signing a treatment subtype for the patient is presented vi-
sually in a way that allows the physician to drill down into
the individual assays and other clinical factors to assess the
quality of those assignments, any of which may have to be re-
peated or changed in the patient record. This is aided by the
tool’s GUI displaying the full data set as basic grouped and
scaled items, seen in Figure 1. Data points which are cate-
gorized incorrectly stand-out strongly and the interactions for
changing single or groups of points are quick and simple.

3. If a clinician has any doubts about the assignment, or if they
receive information from the patient which would preclude
them from being a member of the group to which they were
assigned, then the traits used by the algorithm to associate the
patient with the group are marked as significant.

4. The data, with marked significance, is fed back into Phar-
maForeCast where the data points of interest are highlighted
through desaturation. This allows the doctor/user the ability

EENRLL,
Figure 3: Dimensional reduction is a classification approach. A pa-
tient’s classification (Orange) can be broken up into all of the mea-
surements required to classify them. Measurements quality is indi-
cated on the Y axis. If there are low-quality measurements on which
the classification depends, we can update those measurements and
reclassify the patient. This iterates until the patient is assigned a final

classification with no low-quality, uncurated measurements involved
in their classification.

to quickly reassess previously ambiguous data points, for ex-
ample those which may be on the border between two clusters
and had been guessed incorrectly by the clinician.

5. After alterations the fixed data is run through the classification
algorithm again to see if, with fixes, the patient now belongs
to a similar, but different group.

6. The process is reiterated, as in the loop in Figure 2, until the
clinician is satisfied, and can be resumed should new or con-
tradictory patient information become available.

This same emphasis which allows the user to view full sets of
data without being overwhelmed aids greatly during data correc-
tion. It is not practical for a user to go through thousands of in-
dividual elements which need reassignment. Our tool does allow
for groups of elements to be switched collectively, but points which
need changing may be scattered or mixed, and so changing each
one would still present a problem in even medium scale data. The
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Figure 4: Despite the outlier, at top, being able to strongly influence
the blackbox algorithm, the assay may lack the desired level of re-
liability as evidenced by the lack of clear clusters at low values on
the y-axis. This datapoint could then be excluded and the algorithm
rerun to check if the patient’s treatment subtype was sensitive to the
results on this assay. Note, the physician does not need to under-
stand the mechanics of how this datum is used by the blackbox, but
is still quite capable of performing this sensitivity analysis to under-
stand the robustness of the assignment.

’significant’ data subsets are more practical to manage. Effectively,
just as the classification put the data through dimensional reduction
for easy understanding, this visual technique reduces the dimen-
sions needed for comprehending where data corrections are needed
and how they should be altered.

The iterative nature of the tool emphasizes the real world issue
that clinicians often learn more about a patient. Beyond the initial
analysis performed patient information continues to grow. When a
new symptom or analysis comes to light it is important to be able
to integrate existing and novel information together as seamlessly
as possible, as in Figure 3. In the best case, information collection
and analysis will quickly converge to a correct diagnosis. When
this does not occur, identifying whether an error occurred in old
or current information, updating accurately, and reclassifying will
become important. Further, like many visual analytics tools, this
ability to interact with the data helps users gain a more intuitive un-
derstanding of their patient’s record, and this understanding grows
with each iteration.

4 CONCLUSION AND FUTURE WORK

As we have shown, personalized medicine can benefit from our
tool in many direct ways. With the possibility of doctors looking
through hundreds of patients’ genetic information this tool offers
an advancement in throughput and accuracy for a fast approaching
need.

We acknowledge a need for improvements to the tool in the fu-
ture. An early enhancement we would like to add is a form of track-
ing past choices. As noted by Shrinivasan et al [13] and others,
there is a large gain for users in seeing what has been explored in
the past, especially in collaborative efforts. This would apply espe-
cially in cases where multiple doctors look at a patient’sassessment
over the course of time. The ability to see what manual choices
have been made before would prevent repetitive work and help gain
insights into the paths of thought the previous analysts had.

Also, of use to doctors may be the ability to show patients, for
the purpose of fuller understanding, the link between their labora-
tory and clinical information, and the group to which they’ve been
assigned. For this purpose a more stylish version that still holds to
an uncluttered and effective information layout may be in order.

Finally, it is forseeable that doctors and researchers may wish to
compare the expressions of two patients, perhaps in a search for a
common factor in a disease or because of they are family members
where one has a disease with a known cause-location. Along this
idea, we would like to expand the program to be able to run multiple
patients’ information concurrently.
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Hierarchical Summarization of Concepts for Visual Discovery Browsing —
a Pilot Study

Michael J. Cairelli*, Thomas C. Rindflescht
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ABSTRACT

Summarization and visualization tools are needed to facilitate
discovery of information in clinical research because the literature
is vast and time and resources are limited. Semantic MEDLINE is
a literature-based discovery browsing tool which extracts
predications from the MEDLINE database and returns a graph of
concepts and their relationships based on the provided search
terms and parameters. These graphs can be complicated and
visually cluttered, hiding valuable concepts and relationships from
the user. Collapsing individual concepts into a common,
generalized ‘parent’ concept increased readability, thereby
enhancing the ‘discovery opportunity’. This approach, illustrated
with biomarkers for mild traumatic brain injury, can be fully
automated using UMLS hierarchy.

KEYWORDS: natural language processing, literature-based
discovery, discovery browsing, semantic network, Unified
Medical Language System, MEDLINE.
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1 INTRODUCTION TO SEMANTIC MEDLINE

Semantic MEDLINE [1] is an information management tool
developed at the National Library of Medicine that assists the
domain expert in searching the literature. The application exploits
semantic predications from the MEDLINE database and returns a
graph of concepts and their relationships summarizing retrieved
text. Designed to be used by biomedical researchers and
physicians, it requires no understanding of its linguistic or
mathematical underpinnings. It utilizes a database created by a
natural language processing system, SemRep [2], which extracts
concepts and their relationships from MEDLINE citations which
are mapped to the Unified Medical Language System [3] (UMLS)
for consistency.

Semantic MEDLINE uses automatic summarization to isolate
the most salient predications for a given search [4]. Automatic
summarization allows an up-to-date and exhaustive look at the
literature, unlike review papers which can be out-of-date and
incomplete. This allows the time required for an exploration of
the literature for a given subject to be dramatically reduced.

Most search tools provide a list ranked by date or popularity —
an approach that makes little known or forgotten knowledge more
difficult to find. A visual representation of concepts can provide
the researcher with an accessible summary, allowing quick
recognition of known and unknown relationships.

*e-mail: mike.cairelli@nih.gov
Fe-mail: trindflesch@mail.nih.gov

Semantic MEDLINE

Query: [NSE AND S100B

Search Reset

Search Options:

Most Recent: |20000 = Start Date: |01/01/1889
End Date: |04/30/2011

Publded Lumts: _Show

Medline Citations

[Found 78 citations. Showing 1to 20

[Pages: Prev 1]2 |3 |4 | Mext

Citations

Rana O, Saygih B, Schiefer I, Mare 17, Schauerte P

Biochemical markers and somatosensory evoked potentials in patients after

. Abstract
cardiac arrest: the role of neurclogical cutcome scores —

21440912

Tilnaz M, Karaal ¥, Ozdem 5, Tutkay M, Unal &, Dora B
Elevated 3100B and neuron specific enolase levels in patients with migraine-

. X Abstract
without aura: evidence for neurodegeneration? —

21293918

Gonzéler-Quevedo & Garcia S, C in O, Freizas B, Sotolongo L

Menéndez M, Sanchez M, Almirall T, Carriera R, Diaz Z, Menéndez K

Increased serum 3-100B and neuron specific enclase - Potential markers of Abstract
early nervous system involvemnent in essential hypertension

21130083

Tallondoc B UL I ok D Do ot IIIL I L

Figure 1. Semantic MEDLINE search tab.

1.1 Semantic MEDLINE Implementation

Semantic MEDLINE is a Java Enterprise Edition Web
application, which utilizes open source technologies such as the
Tomcat Servlet container, Apache Struts, and the Java Servlet API
[1]. The Semantic MEDLINE database is a MySQL database that
contains semantic predications extracted from MEDLINE
citations, UMLS Metathesaurus data (such as synonyms and
semantic types), and Entrez Gene data (synonyms). The database
is prepopulated from plain text files generated by the SemRep
application [2]. The database currently contains 27 million total
predications extracted from 7.8 million total citations published
between 1/2/1999 and 6/30/2011. Graph visualization is achieved
using a Flash application with the Adobe Flex framework and the
Flare visualization toolkit. The layouts currently used include
NodeLinkTreeLayout, RadialTreeLayout, and CircleLayout.

1.2 User Interface

The user interface for Semantic MEDLINE is set up as two tabs
for user input and a graph visualization for application output.
The search tab allows the user to enter a specific PubMed query,
select a result count limit, select a publication date range, and
select other PubMed filter options. The summarization tab
displays the user’s search parameters, the count of citations
retrieved, and the number of predications retrieved at the top.
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Lower in the form summarization options are entered including
the type of summary (treatment of disease, substance interactions,
diagnosis, or pharmacogenomics) and the focal node in the graph.

M Semantic MEDLINE

ch  Summarization

Query: NSE AND 3100B, Source: Medine, Most Recent: 20000, Start Date: 01/0171958,
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Figure 2. Semantic MEDLINE summarization tab.

Nodes are labeled and color-coded by UMLS semantic groups,
such as Anatomy, Chemicals & Drugs, or Genes & Molecular
Sequences (Figure 4). The relation labels for the graph are also
color coded for the semantic relationship they represent (Figure 5)
and are displayed with a check box for each to allow the user to
decide which to include in the graph. In addition to the
visualization of the graph itself, when an edge is clicked the user
is provided with relationship information such as subject, object,
relation, number of predications, number of citations, and a
citation button which links to pop-up window with the PubMed
ID linked to the PubMed entry, date of publication, title, and the
abstract with the source sentence highlighted. A node search tool
is also provided which shifts the graph to center on the searched
concept.

| Activities & Behaviors | | Organizations

| Devices | | Chemicals & Drugs

|Gomepls& Idea5| Anatomy |
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Figure 4. Node color codes by semantic type.
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Figure 3. Semantic MEDLINE graph visualization.

Figure 5. Edges color codes by relation.

1.3 Potential Design Improvements

Although Semantic MEDLINE has already contributed to
significant discoveries in biomedicine (e.g. [5]), there remain
opportunities for enhancing the graph visualization, thereby
increasing the facility for knowledge discovery. Graphical
encoding enrichments could include utilization of node size and
edge thickness and multiple arcs between a pair of nodes Node
size is currently constant but could be varied to represent the
degree centrality (connectivity) of each node. We would also like
to explore methods of displaying multiple relations between
nodes, possibly using thickness of the edge to represent frequency
using a logarithmic or exponential function coupled with edge
bundling. Additionally, there is immediate value in providing the
user the ability to merge nodes together when they belong to a
common group. For example, various types of injuries could be
collapsed to the common concept ‘Injury’. In this paper we
explore this possibility further and demonstrate the utility it
garners to the user.

2 METHODS

Based on previous discovery in the search for mild traumatic brain
injury biomarkers, the two seed terms ‘neuron-specific enolase’
(NSE) and ‘S100B’ were used as search terms in Semantic
MEDLINE with no restriction on number of citations or date of
citation. Summarization was focused on substance interaction
predications using the concept ‘Brain Injuries’ as the positional
focus of the graph. Nodes that were determined by a physician to
represent some concept within the UMLS semantic type ‘Injury or
Poisoning” were manually moved to a single position, simulating
a single collapsed node.
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Figure 6. Semantic MEDLINE result from query search “neuron-
specific enolase AND S100B”.

3 RESULTS

Figure 6 shows the initial graph returned by Semantic MEDLINE.
In Figure 7, the concepts that represented some form of injury are
grouped together. The concept FABP3 (fatty acid binding protein
3) becomes much more evident after summarizing the injury
nodes. This concept is linked by Semantic MEDLINE to a
citation that identifies FABP3 as a more sensitive marker for
minor brain injury than either S100B or NSE, which are two of
the most studied as biomarkers of moderate to severe brain injury
but not useful for mild cases (see Figure 8).
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Figure 7. Nodes manually collapsed to reveal FABP3.
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Abstract

BACKGROUND: Detection of brain injury by serum markers IS not a standard procedure in clinical practice, although several

proteins, such as S1008, neuron-specific enclase (NSE), myelin basic protein, and glial fibrillary acidic protein, show
results. We the tissue of brain- and heart-type fatty acig-binding proteins (B-FABP and

H-FABP) in segments of the human brain and the potential of either protein 10 Serve as plasma marker for diagnosis of brain

injury.

METHODS: B-FABF and H-FABP were measured immunachemically in aulopsy samples of the brain (n = 6) and in serum

samples from (a) patients with mild traumatic brain injury (WTBI, n = 130) and (b) depressed patients undergoing bilateral

electroconvulsive therapy (ECT; n = 14), The protein markers $1008 and NSE were measured for comparison. Reference

values of B-FABP and H-FABP were established in healthy individuals (n = 93).

RESULTS: The frontal, temporal, and occipital lobes, the striatum, the pons, and the cerebellum had different tissue
concentrations of B-FABP and of H-FABP. B-FABP ranged from 0.8 microgfg wet weight in striatum issue o 3.1 microg/g in
frontal lobe. H-FABP was markedly higher, ranging from 16 2 microg/g wet weight in cerebellum tissue to 39.5 microgfg in
pons. No B-FABP was detected in serum from healthy donors. H-FABP serum reference value was 6 microgiL. In the MTBI
study, serum B-FABP was increased in 68% and H-FABP in 70% of patients compared with $1008 (increased in 45%) and
NSE (increased in $1% of palients). In ECT, serum B-FABF was increased in 6% of all samples (2 of 14 patienis), whereas
H-FABP was above its upper reference limit (6 microgiL) in 17% of all samples (8 of 14 patients), and §1008 was above its
upper reference limit (0.3 microg/L) in 0.4% of all samples

CONCLUSIONS: B-FABP and H-FABP patterns differ among brain tissues, with the highast concentrations in the frontal lobe
and pons, respectively. However, in each pan of the brain, the H-FABP concentration was at least 10 times higher than that of
B-FABP_Patient studies indicate that B-FABP and H-FABP are more sensitive markers for minor brain injury than the currently
used markers §1008 and NSE

PMID; 15217931 [PubMed - indexed for MEDLINE]  Free Article
Figure 8. FABP3 citation found after collapsing ‘Injury’ nodes.

4 DISCUSSION

Collapsing nodes with a common semantic type in complex
graphs facilitates the discovery process, in which a previously
unknown relation ‘A-C’ is discovered based on known relations
‘A-B’ and ‘B-C’. Not only does collapsing nodes make the graph
more readable by reducing clutter, but it can also show
relationships between classes of concepts that may not have been
obvious for specific members of the class. For example, given
that concept A is a member of class I, concept B and C are
members of class II, and concept C is a member of class III; if A
is related to B and C is related to D, then class I is related to class
III through class II (Figure 9).

Concepts

(O—0 O—0

*
?
.l..l“

Figure 9. Nodes are generalized to their class, revealing new
relationships between classes.

This method of node summarization is fully automatable. In
this example we generalized to the UMLS semantic type to
identify similar concepts, but this can be taken further to use the
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UMLS hierarchy to find the nearest common ancestor for the
nodes being collapsed.

5 CONCLUSION

This demonstrates the manual node summarization of a Semantic
MEDLINE graph. The revised graph dramatically simplified
remaining relationships, facilitating the discovery of new
information (in this case, FABP3 as a substance relevant to
traumatic brain injury). When automated, node summarization
holds considerable potential for enhancing the discovery browsing
ability of Semantic MEDLINE.
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ABSTRACT

A family history of disease can be a powerful clinical indicator
of risk. The challenges associated with collecting a thorough
family history, and maintaining that information over time,
prevent the benefits of effective prophylactic treatments from
reaching those with the greatest risk. We have introduced patient
self-reported data entry using tablet computers, along with clinical
decision support algorithms and visualizations for interpretation
and analysis, into a clinical workflow capable of large scale
screening and management of those at high risk for hereditary
breast and ovarian cancer.

KEYWORDS: Risk Assessment, Breast Cancer, Clinical
Decision Support.

INpEX TERMS: J.3 [Life and Medical Sciences]: Health—
Medical Information Systems

1 INTRODUCTION

One of the great hopes of the genomic age is that by
understanding and identifying genetic mutations, we can prevent
disease. One of the barriers to genomic technology having a
significant impact on public health has been our ability to identify
those healthy individuals who are at risk of disease because they
have inherited a mutation before they become sick. Until the day
when everyone gets full gene sequencing as part of a screening
program, we will likely rely on patient self-reported family history
as signal for identifying those whom genetic testing would
benefit. The difficulty this presents to our current approach is that
providers are asked to collect the data in sufficient detail and then
identify the wide range of syndromes, often without special
training [1]. According to the Online Mendelian Inheritance in
Man database of genetic disorders, there are 188 adult hereditary
syndromes with at least one adult chronic disease. In this paper we
discuss the example of Hereditary Breast and Ovarian Cancer
(HBOC), and methods we developed to expand the identification
and management of those at risk for its effects.

There are approximately 1,000,000 carriers of mutations in the
genes that cause HBOC (BRCA1 and BRCA?2) in the US, and of
those about 50,000 (about 5%) have been identified to date [2].
We believe this poor performance is likely the highest rate of
identification for any adult hereditary cancer syndrome because
clinical genetic testing has been available now for thirteen years
and we know a great deal about the association between the genes
and treating the disease.

Most high risk women are not being identified or referred for
counseling, and our risk clinics could not manage the volume if all
high risk women were referred [3]. Health Information
Technology (HIT) holds the key to increasing the quality of care
while decreasing the cost of care [4,5,6,7]. This will be
accomplished by increasing efficiency and increasing the use of
Clinical Decision Support (CDS) to promulgate evidence based
medical care. Thoughtful visualisations will be necessary to
synthesize CDS with data from the patient and the clinician to

make proper management obvious at the same time as directly
supporting the clinical workflow.

We have developed a system that integrates these components
into mammographic screening, genetic counseling, and surgical
clinic settings.

2 LARGE ScALE METHODS

By developing an HIT infrastructure for identifying BRCA
carriers, we believe the approach can scale up easily. We also
expect the approach can work for many other disease areas. We
also believe however it is ultimately necessary for these tools to
be interoperable with other clinical systems. Unfortunately,
current Electronic Health Record (EHR) systems remain digital
copies of paper records, using little of the graphical or
organizational power of a computer. As an example, to evaluate
the risk of a hereditary condition, one must look in the
demographics section, the family history section, the problem list
and the lab results section to see all pieces of the puzzle. Pedigree
visualizations (Figure 2) can put all this data into a single coherent
picture, simplifying the clinician’s work [8], but pedigrees and
other visualizations remain beyond the capability of EHRs.

The need for CDS is driven by the rate in which providers are
being deluged with new information.  Knowledge grows
exponentially, as seen in part by the dramatic rise in the number
of articles in Medline and PubMed [9]. We do not believe it is
reasonable to expect that providers will be able to keep up with all
the information they need to manage patients. CDS provides the
likely solution.

Most importantly, CDS should facilitate the best action as part
of normal workflow. Today, CDS is rudimentary at best, both
squandering the opportunity to increase quality and producing
cynicism among providers as to its utility. EHR vendors
uniformly point out alerts for drug-drug interactions and allergies
as proof that they know how to accomplish CDS. In reality, these
systems have failed as they do not present the information to the
provider in a compelling way nor do they help the clinician follow
the recommendation within the course of their normal workflow.
Isaac et al identified that providers fail to act on 93.4% of drug-
drug interaction alerts and 77% of allergy alerts [10].

A prototype solution

The process starts when a patient checks in and is handed a
Tablet PC which displays one question per screen in a choice of
languages including English, Spanish and Italian (Figure 1).
Information from prior sessions pre-fills the answers to most
questions, while branching logic moves over questions irrelevant
to the patient. She enters risk factors, family history, and an
extended review of systems.
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Figure 1. A sample Hughes RiskApps patient survey
question showing a simple interface with easy to read
questions and options for multiple languages.

Upon completion of the survey, risk models for breast cancer
are immediately run and a summary printout is generated that
displays the patient data in an intuitive form, including a pedigree.
Patient information sheets, such as smoking cessation
information, are generated for appropriate individuals. The staff
reviews the summary printout to confirm accuracy, and makes
appropriate corrections.
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Figure 2. The pedigree visualization can show risk
for a whole family.

The clinician workflow is based on an intuitive set of tabs that
starts with a review of the data entered so far, progresses through
the clinical encounter, and ends with all of the necessary
documentation and order sheets being generated. In the risk clinic
module the genetic counsellor can review the results of the risk
models with the patient to help determine what the various options
and likely outcomes are, and ultimately if testing is an appropriate
course of action (Fig 3).

In addition to viewing the raw data, risk calculation algorithms
are run and the results are displayed to the clinician using a visual
representation. Graphs show results from BRCAPRO, a standard
breast cancer risk assessment algorithm, run multiple times for the
same family using different parameters. BRCAPRO is also run for
each relevant family member, with the risk of mutation shown for
each in a pedigree diagram.

Genetic testing recommendations are made within the same
user interface in which the data is shown. In addition, risk of
mutation is computed from another risk model, the Myriad model,
and results from both BRCAPRO and Myriad are shown on a risk

Street Address and Electronic Mail Address

of mutation slider, which the clinician can set manually. Family
members are listed in order of likelihood of mutation. The
willingness of each to be tested can be recorded.

Lifetime risk of breast or ovarian cancer and several risk
management suggestions are shown to the clinician for multiple
scenarios: without testing (Current synthesis), as if the patient
tested positive, as if the patient tested negative, and the population
risk. Gail, Claus, MMPRO and PREMM risk model results are
displayed as well. CDS suggests alternative syndromes in order of
likelihood, and shows manifestations of the selected syndrome.
Double clicking on a syndrome opens its page in the OMIM and
Genetests Websites.

The CDS system helps the clinician find all mutation carriers by
enabling the clinician to visually document the testing of family
members. The tool then shows the number tested versus number
of living relatives age 18 or older with a mutation risk of 10% or
greater.

In the surgical module, the clinician adds details about the exam
and completes collection of information using an interface tailored
for this encounter (Fig 4). The immediate payback for this work
is how the CDS helps the clinician develop an impression and
plan. After discussion with the patient, the record is finalized and
the software generates a history and physical, a letter to the
referring provider, patient information sheets appropriate to the
diagnosis, and a consent form if surgery is planned.

Patient Name: Test, Standard1 Unit Number: 99909091101

Date Of Birth: 01/11/1970
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Figure 3. Clinical Decision Support guides the workflow
through making a decision about genetic testing.

On subsequent visits, pathologic results are entered which help
generate additional summary documents, and generate further
suggested orders (e.g., if Estrogen receptor negative, obtain
Medical Oncology consultation). The approach is to keep the
surgeon in line with the appropriate quality measures in real-time,
rather than tell them at the end of the year how often they were
not compliant.
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Figure 4. The data entry screen for a breast exam in the
RiskApps surgical clinic module helps entering
encounter-specific information.

2.1 More Women Identified

Once high risk patients are identified, the next challenge is to
improve the efficiency of the risk clinic to manage the influx of
patients. Our challenges are to minimize clinician work, minimize
redundant data entry, and minimize dictation and editing tasks.

Traditional | Our Approach
Task {minutes) (minutes)

Clinician collects family history 0to 10 0
Data entered in risk calculator app 5to 10 0
Data entered into pedigree drawing app 10to 20 0
Risk level assessed 5to 10 5
Fae to face counseling 30 to 60 30 to 60
Letters/notes generated 20to 40 10

Total| 70 to 150 45t0 75

Table 1. Comparative time costs using the traditional
approach versus the Hughes RiskApps approach.

At the Newton Wellesley Hospital Breast Center between April
of 2007 and December of 2010, 49,758 unique family histories
were collected and analyzed. Of those, there were 2,255 patients
whose risk of mutation were greater than ten percent and were
referred for counseling. The system maintains several
mechanisms for tracking those identified, including a specialized
queue interface listing all at risk individuals with quick access to
their family history, contact information and pending
appointments at the screening center. Each identified woman is
also mailed a letter that explains the risks of cancer and the testing
process. This letter is copied to her primary care physician as
well.
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Figure 5. The high-risk patient queue gives a clinic-wide
view of which patients are at the highest risk and would
benefit the most from testing.

3 DOCUMENT GENERATION

RiskApps currently generates over 80 different clinical
documents specialized for a variety of workflows, saving time on
dictation and cost of transcription. In the risk clinic setting, these
include: a letter to the referring doctor, a letter to the patient, a
progress note for the patient's chart, a letter to relatives who need
testing, a letter of Medical Necessity for the patient's insurance
company justifying genetic testing, and a document justifying an
MRI.

The data can be easily summarized into reports required for
quality measurement. The system can be set up to automatically
produce performance based measures used by quality programs
such as the NAPBC, NCBC, and QOPI. The system can help
improve quality in 3 ways: 1.) help the clinician follow quality
standards in real-time, 2.) run quality reports daily or weekly,
identifying activities that do not meet the standards, or 3.) run the
report yearly or when the recertification application is due.

3.1 Structured data and Standards

While EHRs do allow multiple clinicians to share data, the
majority of meaningful information in the EHR is free text in
encounter-based unstructured notes. As such, it cannot easily be
organized, it typically cannot be used by CDS, and it is difficult to
extract for research or quality initiative reporting. This
emphasizes the need for structured data.

Structured data is data recorded in predefined fields
(placeholders) using coding systems (ICD-9, ICD-10, CPT,
SNOMED, etc.). As such, it is made machine readable. The
beauty of structured data is that it allows the development of
unified methods to view and interpret data. In today’s EHRs, few
structured data elements exist, and those that exist are mostly
unpopulated. Most Clinicians will not take the time to enter
structured data into an EHR because there is little return on
investment.

As an example, the family history data elements needed by
EHRs were published by AHIC in 2008 [11], and were these
elements adopted and implemented there would be tremendous
opportunity for visualizations (e.g., pedigrees) and risk
algorithms. Instead, in practice the vast majority of recorded
family history information is found as multiple dictated notes
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made by multiple clinicians, while the family history section of
the EHR remains mostly ignored.

Hughes RiskApps complies with the HL7 standard for
representing health records. Data from our software can be shared
with any HL7 compliant software. Data can be uploaded or
downloaded to any EHR that has a complete family history
section and that is HL7 compliant.

4 ConNcLUSION AND FUTURE WORK

HughesRiskApps can help us realize the promise of the
genomic age on a population level. As this tool is becoming more
widely used, more high risk women are being identified, family
history is being integrated into normal clinic workflow, more
women are being cared for by risk clinics, and risk counselors are
able to act with much more efficiency.

We believe the future of RiskApps, and that of all successful
EHRs, will be a modular approach. Niche vendors will be able to
develop approaches specific to the needs of each specialty, and
then use these as frontends to any EHR [12]. In this approach, the
EHR would increase its database to house common data elements,
and provide the more ubiquitous functions of allergies,
ePrescribing, etc. Domain specific user interfaces provide the
presentation and the organization of information specific to that
specialty.
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ABSTRACT

Massive amounts of biomedical data generated by the latest
high throughput technologies are challenging to analyze. Visual
Analytics (VA) tools and techniques are intended to amplify
medical researchers’ cognitive and perceptual capabilities and
enable them to understand complex biomedical data. In this study,
we explore how visualization tools can facilitate the exploratory
analysis of this data. In order to assess and evaluate the
effectiveness and usefulness of using visualization tools to
enhance medical analysts’ data exploration, we analyzed the use
of Tableau and iPCA by biomedical researchers to explore
immunological data. Our findings reveal that VA tools are
efficient and powerful tools that can be integrated into healthcare
systems to help health researchers get insights and generate
knowledge from their complex medical data.

KEYWORDS: iPCA, Tableau Software, Interactive Visualization.

1 INTRODUCTION

The latest high-throughput biomedical technologies used in
flow cytometry produce massive amounts of medical data. The
magnitude and complexity of these data are overwhelming to
immunological researchers including immunologists and
biologists. Analysing and extracting useful information from these
data impose a great challenge on the medical research community.
It is our argument that efficient and effective visualization tools
can facilitate the exploration and analysis of complex biomedical
data. Interactive visualizations provide biomedical researchers and
analysts with efficient tools and techniques to amplify their
cognitive skills and enhance their initial understanding of the data
during the exploratory analysis process.

Visual Analytics (VA) is defined as “the science of analytical
reasoning facilitated by interactive visual interfaces” [5]. These
interactive visual interfaces rely on advanced visualizations of
data and interactive techniques to accelerate the data analysis
process, derive insights, acquire knowledge and optimize
decision-making [6]. The implementation of interactive
visualization tools was introduced in various medical disciplines
to amplify analysts’ cognitive capabilities and address the
challenge of extracting useful information from massive datasets.

In this study, we present a case study of immunologists and
biologists analyzing massive and multi-dimensional datasets using
two visualization tools: iPCA (interactive Principal Component
Analysis) and Tableau Software. Furthermore, we demonstrate
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how the integration of real-time visualization tools can help
biomedical researchers uncover hidden trends in complex data and
expose data patterns that are not noticeable otherwise, and
ultimately facilitate the exploratory data analysis process. Finally,
we show how immunologists exploited these visualization results
to generate valuable qualitative information and drive new
research questions.

2 TASK, MATERIALS AND DATA

2.1 Task and Data

In order to assess the accuracy and effectiveness of VA tools
for medical data analysis, we used analysis immunological data as
a case study.

Sub-Saharan Africa has the largest HIV-infected population in
the world [2]. The vast majority of infants born to HIV positive
mothers are not infected themselves. However, those HIV
Exposed but Uninfected (HEU) infants are at a high risk of
mortality during their first year of life; they suffer severe immune
system deficiencies and an abnormal susceptibility to infections
and diseases [7]. The causes of this mortality and morbidity are
unclear and are currently the subject of a biomedical research
carried out by immunologists and biologists at the Child and
Family Research Institute (CFRI) in Vancouver, BC. The main
analytical goal of this research project is to understand the
immune responses of HEU infants and link these responses to
causes of high mortality and morbidity.

The HEU dataset included laboratory data generated by Flow
Cytometry Luminex high-throughput technologies at CFRI. Blood
and tissue samples from HEU infants, HIV positive infants, and
unexposed infants (EU) were stimulated with several infectious
agents and fed into the Flow Cytometry device to measure infants’
immunological responses by focusing on cytokine levels. The
datasets were multidimensional, heterogeneous and complex.
They included the flow cytometry data on cytokine responses to
infectious agents, as well as the infants’ demographics, feeding
methods, and vaccine reactions data.

2.2 The Analytic Setting: Paired Analytics

To focus on the accuracy and effectiveness of VA tools in
supporting the analysis of these multidimensional biomedical
data, rather than wasting immunologists’ time in tool training, we
decided to follow a pair analytics protocol for collaborative visual
analysis [8].

In a pair analytics protocol, a visual analytic Tool Expert (TE)
is paired with a Subject Matter Expert (SME) to conduct a
collaborative visual analytic session organized around a well-
defined task, a dataset, and a visual analytic tool [8]. Since the TE
lacked biomedical expertise to conduct a meaningful analysis of
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the HEU data, and the SME lacked tool expertise to operate the
visual analytic tool proficiently, their collaboration was required
to make the most of the visual analytic sessions. In our case, the
SMEs were biologists and immunologists. The TE was the main
author of this paper. The pair analysis was structured to help
immunologists exploit the VA tool and increase the speed,
efficiency, and accuracy of the exploratory data analysis process
[8]. Both experts worked together and exchanged expertise to
understand the HEU data and assess the relevance of using two
different visualization tools (iPCA and Tableau) for exploring
biomedical HEU data.

3 VISUALIZATIONS AND INSIGHTS

Intuitive and interactive data visualizations facilitated the
exploratory analysis of HEU data and enabled immunologists and
biomedical researchers to analyse and interact with HEU data at
various levels of abstractions to identify trends, patterns and
formulate hypotheses.

To study HEU infants” immune system reactions to infectious
agents, we explored HEU and EU infants’ cytokine reactions
using two interactive visualization tools: iPCA and Tableau
Software.

3.1 Interactive Principal Component Analysis (iPCA)

Interactive Principal Component Analysis (iPCA) is an
interactive visual analysis tool developed by the Charlotte
Visualization Centre. iPCA wuses the Principal Component
Analysis (PCA) technique to reduce high dimensional datasets
and convert data into new meaningful representations in order to
facilitate users analytical reasoning and expedite the data
exploratory analysis process [3]. Since HEU datasets were
multidimensional, we plotted the HEU data in iPCA to visualize
the reduction of variables representing infants’ cytokine reactions
into principal components, and to analyze the distribution and
contribution of variables to the principal components.

Figure 1. Visualization of Immunological data in iPCA Views: The
Projection View, the Eigenvector View, the Data View and the
Correlation View.

Fig. 1 shows cytokine reactions to one treatment (pIC). Each
colour represents one group (i.e. HUE or EU), and each dot
represents the values for one patient in that group. iPCA visually
reveals the relationship between data variables, highlights outliers
and provides immunologists with a comprehensive overview of
existing correlations among pairs of variables. In Fig. 1, for
example, outliers are quickly detected on the left side (highlighted
here by the red box). It is also evident that the first principal

component accounts for most of the variability in this dataset
(60.2%). The slides associated with each variable (i.e. cytokines)
allowed the TE to quickly show SME each variable’ unique
contribute to the principal components. In this particular
visualization, most variables did not contribute significantly to the
constitution of the first two principal components. One exception
was the variable representing the cytokine IP10. Figure 2, shows
the state of the visualization after the TE interacts with the “IP-
10” slide dropping its contribution to the principal components to
zero (highlighted by the red box). It was visually evident the
dramatic reorganization of the values on the scatter plot
representing the first two principal components. The first
principal component, for example dropped from accounting for
60.2% to accounting for 42.3% of the variability in the dataset,
while the second principal component increased from 14.2 % to
26.8%.

- :*_m. 3 N E;‘.

Figure 2. Interaction with individual variables to visualize their
impact on the constitution of principal components

According to this analysis, the cytokine IP10 seemed to be a
good candidate for further statistical analysis. To verify the
analysis outcome, iPCA offered a matrix of correlations of pairs
of variables. Every variable in the matrix is plotted against other
existing variables to determine correlation coefficients (See Fig.
3). The correlation matrix proved very useful to quickly confirm
the independence between IP10 and all the other cytokines in
terms of responding to pIC treatment, which is visualized by the
absence of dark red colours (i.e. indicators of high correlation) on
the row corresponding to IP10 (highlighted by the red box).

F1
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Figure 3. Correlation matrix
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In summary, immunologists were able to quickly explore the
HEU data and interactively identify which variables were more
and less relevant for further statistical analyses. iPCA enabled
immunologists to interact with the HEU data in real-time. Each
time they changed a data item in one view; the change was
automatically reflected in other views, giving immunologists the
ability to understand data patterns and characteristics. By
interacting with data, immunologists understood the influence and
intuitively perceived the weight of separate variables on the
constitution of the principal components. iPCA also allowed
immunologists to visually detect and investigate outliers (Fig. 1)
and their corresponding data items by eliminating an outlier from
the data and observing its effect on the overall data visualization.

3.2 Tableau Software

Another visualization tool was used to visualize the HEU
datasets: Tableau Software. Tableau is a commercial tool used for
data exploration; it uses interactive visual dashboards to represent
data and facilitate the exploratory data analysis process [1]. In
order to compare the HEU, HIV and EU infants’ cytokine
reactions to infectious agents, we plotted and visually compared
infants’ IP10 cytokine reactions to each one of the 6 types of
stimulations: CpG, pIC, R848, LPS, PG, and PAM, as well as the
unstimulated control: Unstim.

The outcome of the graph, as shown in Fig. 4, depicts the
infants’ average cytokine reactions. Tableau represents cytokine
reactions with different colors and saturations to reveal trends and
show patterns in data. These patterns reflect variation across
infants” groups, indicating that cytokine reactions are cohort-
specific and vary between HIV unexposed and exposed infants.
Tableau enables immunologists to drill down the HEU datasets
and get further individual detailed information. Each bar of the
graph represents all types of cytokine reactions per infant. The
value of each cytokine reaction dictates the height of the bar. The
shape of the bars represents a powerful visualization that provides
immunologists with a comprehensive picture of the difference
among HEU, HIV and EU cytokine reactions.

[
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Figure 4. EU, HEU, and HIV infants’ cytokine reactions to
stimulations. [9]

The interactivity aspect of the HEU Tableau visualization
supports immunologists’ visual data exploration; it enables
immunologists to hover the mouse over any particular patient and
get on-demand detailed accurate statistical information about the
infant’s cytokine reactions to each of the stimulations. The
observed variations in cytokine reactions proved the
immunologists’ hypothesis stating that HIV exposed but

uninfected infants experience less immune defense against
infectious agents compared to unexposed infants.

Immunologists were able to observe how HEU infants reacted
differently to the majority of the stimulations, indicating that HEU
infants” immune system differ from unexposed infants’ immune
system in terms of reacting to invading infectious agents and
susceptibility to disease.

4 DiscussION

Visual Analytics tools and techniques amplify biomedical
analysts’ cognitive and perceptual skills in order to observe and
comprehend complex medical data, derive scientific insights and
acquire knowledge to accelerate health discoveries [8]. Through
real-time interactive visualization, Visual Analytics empowers
biomedical analysts with the ability to reason and make sense of
data under investigation.

Immunologists expressed their design and features preferences
when interacting with the iPCA and Tableau visualization tools,
which could be pivotal to inform the redesign of current tools to
better fit the exploratory data analysis process. On one hand,
immunologists pointed out flaws when interacting with Tableau.
Immunologists were mainly concerned with the lack of the
correlation option in Tableau, a feature that is perceived to be
beneficial to the data exploration process. On the other hand,
during the pair analysis session, the SMEs reported difficulties
when interacting with iPCA. Something expected since iPCA is
an experimental VA tool. Firstly, iPCA needs filtering; selecting
and deleting groups as form of filtering is a cumbersome process.
Secondly, SMEs couldn’t directly access raw data from iPCA as
the tool does not offer this functionality. The TE had to open a
spreadsheet with the raw values on a second screen in order to
have simultaneous access to the raw data. Thirdly, iPCA
automatically assigned colours to groups and did not offer options
for colour customizing to make differences between groups more
visually salient. Fourthly, iPCA did not offer quantitative
information about the exact contribution of each variable to each
principal component. This information needed to be deduced by
interacting with every single slide. A table with values may prove
to be a better, faster, and more precise way to reach similar
conclusions. Finally, iPCA did not provide features to export data.
Since principal component analysis is an intermediary process in
the statistical analysis process of multidimensional data, iPCA
should enable users to export data to a statistical package to
determine whether there is any statistical difference among the
groups.

iPCA and Tableau encounter few pitfalls that constraint and
limit their applications to our current HEU data. However, our
preliminary findings indicate that VA tools support biomedical
data exploration and knowledge dissemination. iPCA and Tableau
visualization examples validate the relevance of using efficient
VA tools and techniques for healthcare applications. iPCA and
Tableau visualizations reveal important features about the HEU
dataset and illustrate the useful application of Visual Analytics for
data exploratory analysis. Furthermore, VA  promoted
collaboration and dissemination of information among health
professionals, which is vital for the decision-making process [4].
Tableau visualization software enabled biomedical researchers to
disseminate, share and communicate analysis results with a
variety of audience through the creation of dashboards. Produced
dashboards can be published to communicate information,
interactively explore results and disseminate knowledge to
colleagues as well as patients to ease dialogue with them. This is
an efficient way to share knowledge and promote collaborative
analytical reasoning.
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Based on the visualization of the HEU data, VA provided
powerful interactive visualizations needed to assist immunologists
and medical researchers in data exploration as well as to generate
hypotheses and test these hypotheses. VA enabled immunologists
to engage and interact with the high dimensional HEU data,
discover details and relationships among data variables, recognize
relevant patterns, identify data clusters and outliers, and ultimately
advance their research. Immunologists’ experience motivates
other health professionals and promotes the use of VA tools and
techniques to explore complex data and to integrate powerful and
effective visualization software in clinical practices.

5 CONCLUSION

High throughput flow cytometry technology provides
immunologists with complex and multifaceted data. Exploring
and examining massive and unstructured medical data exceed the
ability of health professionals to synthesize meaningful
information. Interactive and dynamic graphical presentations of
data empower immunologists with a better perception of the HIV
disease progression and a good understanding of the HEU infants’
immunodeficiency. Visual Analytics uses interactive and intuitive
visualizations to help medical researchers determine hypotheses,
formulate research questions and conduct exploratory data
analysis efficiently. Effective visualization of the HEU data
represents a fundamental step in the data analysis process that can
guide relevant medical discoveries and gain insights into valuable
medical information. Understanding complex HEU data and
drawing valid conclusions enable immunologists to identify the
health determinants of HEU infants and eventually make decisive
public health interventions to reduce HEU infants’ sufferings and
bring changes to the lives of over 300,000 HEU infants born
annually [7].

We identified emerging challenges with iPCA and Tableau that
could provide opportunities to improve the current version of the
tools or design new tools that accommodate the needs of
biomedical researchers and analysts. Further research into the
potential implementation of visualization software for medical
applications will determine how these visualizations can
significantly affect the way analyst look at their data and guide
effective integration of VA techniques and tools in various health
care systems to help medical researchers generate knowledge and
gain insights.
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ABSTRACT

Accurate diagnosis and treatment of biofilm infections require iden-
tification of the pathogenic organism(s) as well as determining the
progress of the disease. Current tools in clinical use, including cul-
turing and PCR tests, are extremely useful for identifying organ-
isms, but are destructive in nature — resulting in the loss of im-
portant information regarding biofilm architecture and state. Im-
proving clinical understanding of these, often treatment-resistant,
infections is of great importance, and new non-destructive imaging-
based tools must be developed in order to gather crucial information
regarding disease.

Here we present new software, ProkaryMetrics, designed to
take advantage of available microscopy imaging modalities, pro-
viding a unique platform for 3D imaging and analysis of biofilm
samples. We demonstrate the software capabilities by analysis
of murine tissue biopsy samples containing uropathogenic Es-
cherichia coli biofilms: wild type UTI89 and UTI89AkpsF strains.
Using ProkaryMetrics, we establish significant architectural differ-
ences with qualitative 3D visualizations as well as quantitative mea-
surements including volumetric biofilm size, bacterial counts, com-
munity density, orientations, and lengths.

Index Terms: J.3 [Computer Applications]: Life and Medi-
cal Science—Biology and genetics; D.2.11 [Software]: Software
Architectures — Domain-specific architectures

1 INTRODUCTION

Proper treatment of an infectious disease requires the identification
of the causative agent and state of the disease, as well as the sus-
ceptibility of the organism to standard treatment. While culture-
based techniques remain the gold standard for identification of bac-
terial and fungal pathogens, diagnostically significant features of
an infection also include aspects of the current activity and state of
the pathogen, in addition to its simple identity as available through
culturing [1]. There is increasing recognition that the state infor-
mation lost through the culturing process can be critical for prop-
erly identifying causative agents and appropriate treatment. How-
ever, there is a dearth of quantitative approaches to acquiring state-
related measures such as pathogen morphology, biofilm/community
organization, and cellular localization from pathology specimens.
The current approaches rely either on automated applications of
computer-vision, or on manual applications of expert-user visual
assessments from (typically) serial microscopy/histology sections.
Unfortunately, there are significant impediments to both of these
approaches, as, at the diagnostic endpoint there is insufficient ho-
mogeneity across either samples or image-acquisition systems for

*e-mail: dabdoub.2@osu.edu
fe-mail:ray.29@osu.edu

any automated system to be universally, or even widely success-
ful, and simultaneously there is sufficient variation in clinical-user
expertise that evaluations from different experts are not quantita-
tively comparable. Until significantly more sophisticated imaging
capabilities are routinely available to endpoint clinical caregivers,
any successful approach to integrating quantitative assessments of
pathogen state information into treatment decisions, will require
systems that can extract quantitatively comparable data from nu-
merous disparate imaging systems and imaging modalities, without
requiring more than a lay expertise in applying or adapting the com-
putational approach. Explicitly, we propose that enabling a rural
physician with a white-light microscope to, with human interven-
tion, make quantitatively comparable measurements of clinically
relevant variables, to those produced by a research laboratory with
a scanning confocal instrument, is far more clinically useful than
developing an automated approach for the confocal data alone.

To this end, we introduce ProkaryMetrics, a Visual Analytics
tool for extracting quantitative measures of pathogen community
morphology, density and architecture from microscopy images.
ProkaryMetrics leverages straightforward computer vision and vol-
ume segmentation/visualization approaches that can be applied on
commodity hardware, to provide a guided interface through which
a human expert can rapidly annotate salient pathogen/community
features for quantitative analysis. By applying algorithmic volume
segmentation/visualization as a guide, rather than as a direct pro-
ducer of quantitative results, ProkaryMetrics can be applied to in-
put data across a wide range of imaging modalities, resolutions,
histological approaches, and ultimately absolute quality, without
requiring modification of the algorithm, or adaptation of numer-
ous parameters. By guiding the user to make specific quantita-
tive measures, rather than relying on subjective expert assessments,
ProkaryMetrics can be applied by users with widely varying exper-
tise levels, and still produce quantitatively comparable results.

In this manuscript we validate ProkaryMetrics for quantitating
two pathogen state variables of known clinical importance. The
first is the morphology of the organism. The ability of the mi-
croorganism to alter its size, by regulation of cell division, provides
advantages during disease. ‘“Morphological plasticity” is a well-
known survival strategy for fungal pathogens. Its utility for bacte-
rial pathogens is becoming evident through studies of persistence
of uropathogenic Escherichia coli [6] (UPEC), and Mycobacterium
tuberculosis [4]. In addition to being resistant to the host immune
response, filamentous morphotypes of organisms are typically re-
sistant to antibiotics even when their non-filamentous progeny are
sensitive. This inherent resistance to killing underscores the im-
portance of determining the prevalence of the filamentous morpho-
types in infected samples, as successful treatment regimens must
be adapted to eliminate these tenacious survivors. The second is
the morphology and architecture (in terms of coherent organization)
of the pathogenic community. While only gaining widespread ac-
ceptance in the past decade, pathogen community architecture, and
internal and external organization, have become well understood as
directly modulating the effect and effectiveness of treatments for
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Figure 1: Optical sections of UPEC infected murine bladder biopsy.
(A) The green channel of a UTI89 wild type IBC. (B) The same IBC
reimaged with a lower-resolution, 3-color modality.

infection.

By leading the user to recognize the general structure and organi-
zation of a pathogenic community — a task that can be accomplished
with a generalized visualization algorithm that is adequate for de-
scriptive rather than quantitative purposes — and enabling the user
to then make specific quantifiable assessments and measures within
this generalized presentation, ProkaryMetrics provides a mecha-
nism for quantitation of these population-state traits that can be
consistently applied with existing technology in typical clinical set-
tings. Our results demonstrate that this approach is adequate to
differentiate uropathogenic E. coli morphotypes and strains, and to
extract quantitatively comparable assessments of community state
variables, using both state-of-the-art research, and typical clinical
microscopy samples.

2 SOFTWARE DESIGN

The guiding requirement for ProkaryMetrics has been, and con-
tinues to be, that the system enable end-user practitioners, with-
out programming experience, and with varying imaging modali-
ties at their disposal, to make quantitatively similar assessments
of pathogen/community state traits. As such, the system presup-
poses nothing more than that the user can acquire one or more digi-
tal images of the infected tissue, at sufficient resolution and quality
that the user can differentiate individual members of the community
by visual inspection. Simple volume segmentation algorithms, and
volume visualization approaches enable the user to interactively ex-
plore and annotate the pathogen population within the images, with
as much dimensional detail as is available in the images themselves.
These algorithms and approaches are required only to provide guid-
ance and support for the user’s identification of pathogen features,
and to quantitatively report the identifications. They are at no point
required to automatically determine quantitative features without
user guidance.

While this assisted-manual-analysis methodology requires user
interaction for every diagnostic analysis, we propose that this is en-
tirely appropriate for clinical applications. Not only does this facil-
itate timely analysis of samples that are not amenable to automated
approaches, it is a practical requirement that any automated clini-
cal diagnostic based on data with quality as variable as microscopy
imaging, must be confirmed by inspection by a human expert. Since
such inspection is necessarily visual, it is no impediment that our
ProkaryMetrics approach starts with this process.

3 SOFTWARE IMPLEMENTATION

ProkaryMetrics is written entirely in Python, relying on the Visual-
ization Toolkit (VTK) [8] to enable visualization of and interaction
with volumetric data. Users begin by loading volumetric image
data, typically as a series of single-channel 2-dimensional image
slices of the sample to be studied. This data is first smoothed using
a Gaussian filter, and then isosurfaced with a user-modifiable target

Figure 2: No single isosurface value is appropriate for automated
analysis. However, a human assisted analysis of a range of isosur-
faces, as shown here, produces nearly identical results for both data
sets.

pixel intensity value. This volumetric surface rendering is displayed
in the visualization window allowing the user to manipulate and ex-
plore the data in 3D. The system provides a cursor controlled by the
mouse that attaches itself to the nearest rendered surface through
ray tracing. In this manner, the user can simply click on a surface
outlining a bacterium to place a spherical marker object. One or
more markers can then be recorded as representing a bacterium.

4 ANALYSIS

In order to allow comparison between samples, ProkaryMetrics
supplies a suite of numeric and statistical tools for investigating
the mathematical properties of the biofilms. Using the Khachiyan
method [7] for calculating a bounding ellipsoid E C R” for a set of
m points, users are enabled to estimate the volume of space occu-
pied by the biofilm under investigation. Furthermore, assuming a
standard width and depth for the bacteria, and the length provided
by the user, we can estimate the total volume occupied by the sum
of the individuals. Combined with the ratio of the two volumes we
can present a quantitative picture of the size, shape, and relative
packing density of the bacterial community (see Figure 3).

Using the main axis vector of each bacterium, we calculate its
scalar projection in the direction of each of the orthonormal basis
vectors in IR3. Gathering this information for all of the recorded
bacteria, we can compile statistics on the overall layout and ori-
entations of the bacteria within a community. We use these three
projections to set the RGB components of the diffuse color of the
corresponding bacterium. The resulting visual representation (Fig-
ure 4) provides a clear indication of the general orientation trends
of the community organization, as well as a means to compare vi-
sually between different samples.

Finally, using the midpoint of each bacterium, we borrow a tech-
nique from the field of data mining to calculate the average inter-
point Euclidean distance (Equation 1), giving another measure of
bacterial community packing and another means to compare be-
tween communities.

d(x1,x) = (D

5 RESULTS

We have applied ProkaryMetrics to the visualization and analysis of
UPEC, the major causative agent of urinary tract infections (UTIs).
UPEC causes both acute and recurring (mainly in women) UTIs,
and results in billions of dollars in medical costs and lost produc-
tivity annually [5]. These infections are particularly difficult to
treat because UPEC has evolved highly effective means for evad-
ing host defenses, as well as medical treatment. The major com-
ponents of their evasion strategy centers on intracellular invasion of
the superficial epithelial cells of the host bladder and morphological
change by filamentation. During filamentation, bacteria continue to
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Figure 3: Minimum volume bounding ellipsoids calculated for the
user-marked bacteria in (A) a wild type UTI89 IBC and (B) a cap-
sule mutant (UTI89AkpsF) IBC. The wild type fills a volume of space
approximately 1.95x10° um?® and is nearly perfectly circular in the x
and y dimensions, making it an oblate spheroid. The kpsF mutant is
much larger, occupying a volume of 3.87x10% um?, with a clear bias in
one dimension.

grow but are unable to complete the process of division, produc-
ing a long strand of conjoined bacteria up to approximately 70um
[5]. Establishment of intracellular bacterial communities (IBCs) al-
lows UPEC to avoid the hostile environment of the bladder until
the late stages of infection when the host cells begin to porate and
apoptose[5]. At this point, the bacteria are exposed and filaments
are resistant to neutrophil and macrophage killing, as well as an-
tibiotic treatment [5]. Additionally, the organism traverses distinct
stages of development during the infection cycle, three of which are
specific to biofilm establishment and growth, and during which the
changes in morphology occur [5].

In order to highlight the capabilities of ProkaryMetrics, we fo-
cus on two UPEC data sets, each containing a single IBC and at
least 100 individual bacteria. The first data set is of the wild type
UTI89 (a clinical isolate), and the second is a mutant of UTI89 with
a defect in the production of capsular polysaccharides, specifically
the kpsF gene. This capsule mutant is known to produce visually
distinct IBC:s in size, shape, cohesion, and apparent early onset of
morphological change. As with other mutants, viewers could visu-
ally comprehend the differences as compared to the wild type, but
were limited to vague qualitative descriptions.

In Figure 3 we have used ProkaryMetrics to estimate the volume
of space occupied by the mass of each IBC, wild type and cap-
sule mutant. By visual inspection, the AkpsF mutant IBC is clearly
much larger and less regular in diameter. Fitting an ellipsoid to the
data, as is seen in the Figure, we calculate the wild type fills a vol-
ume of 1.95x103 um3 and, within tolerance, fits the category of an
oblate spheroid (two of the radii are equal). The AkpsF mutant fits
with the visual inspection and has occupies a much larger volume
of space of 3.87x10% um>.

The question of orientation is an interesting one, and certainly
important when regarding biofilms. In fact, it is their structure as

a community and the spatial heterogeneity of the individuals that
contributes greatly to their role as a common cause of persistent
infection and their ability to resist treatment [2]. However, obtain-
ing such important information is impossible with destructive tech-
niques such as PCR. As we described in Section 4, the orientation
of the main axis vector running along the length of each bacterium
is compared to the three orthonormal basis vectors in R>. In Figure
4, we have used the three orientation calculations to fill the RGB
components of the color for each bacterium. ProkaryMetrics cur-
rently provides three different, user selectable, coloring schemes,
and Figure 4 displays the orientation to color mapping: x—blue,
y—green, z—red (only bacilli are colored by orientation). In both
data sets the bacteria are nearly perfectly aligned with the plane of
the image, indicated by the general lack of red in the bacilli. Addi-
tionally, with this visualization, it is immediately obvious that the
AkpsF mutant is largely dominated by orientation relative to the
y-axis (Figure 4B is rotated 90°).

Figure 4: Visual representation of the orientation of the main axis of
each bacterium with respect to the three orthonormal basis vectors
in R3. The xyz components of the orientation are represented in the
RGB channels of the image: x—blue, y—green, z—red. Filaments
and coccoid bacteria are left in their original color. (A) The UTI89 w.t.
IBC is clearly split into two fairly distinct populations with one having
the main component of its orientation in the y (green) axis, the other
with the main component in the x (blue) axis. (B) The IBC formed by
the AkpsF mutant is dominated by bacteria oriented along the y axis,
indicated by the predominance of green. The image is rotated such
that the y-axis is presented horizontally.

While Figures 3 and 4 provide important semi-quantitative anal-
ysis regarding overall biofilm organization and architecture, math-
ematical and statistical comparisons of architectural characteristics
are necessary to establish quantitative descriptors that can be used
to prove key differences. Table 1 gives a summary comparison of
such data, as well as additional information that is not provided by
the previous visual representations. Case-in-point, Figure 5 estab-
lishes statistical proof of the obvious qualitative differences visible
in the orientation visualization in Figure 4. As we would expect,
the bacteria in both samples exhibit almost no orientation change
in the plane of the image (z-axis). However, both the x-axis and
y-axis orientation data show significant differences, with the wild
type strain exhibiting similar orientation distribution in both, while
the AkpsF strain is dominated by orientation difference in the y-
axis (as we expected from Figure 4B by the majority of green-hued
bacteria).
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Figure 5: Quantitative representation of the orientations and lengths
of the bacteria within the w.t. and AkpsF UTI89 IBCs. The relative ori-
entations are calculated as the projection of each dimensional com-
ponent on its respective axis. In both, as noted in Figure 4, the rela-
tive orientation of the bacteria with respect to the z-axis is nearly flat.
Both the x and y-axis projections, however, show significant differ-
ences, as do the overall bacterial lengths between the two samples.
(*) 2-tailed Mann-Whitney U test, p < 0.0001 (**) unpaired 2-tailed
Student’s t-test, p < 0.0001. Finally, the gray barplots in each graph
represent the data gathered from the lower quality data set seen in
Figures 1B and 2. Despite the loss of information, we were able to
achieve nearly identical quantitative results with ProkaryMetrics.

Quantifier UTI89 w.t.  UTI89AkpsF
Count 120 161
Length (um) £ o gL N haaa
IBC Volume (um?) 1949 38660
IBC Diameter (um) 21.6 320
19.6 93.8
331 12.9

Volume Ratio 0.58 0.32

Orientation (0.0-1.0) VAN \ L=
IB Distance (um): 157 62.5

Table 1: This table summarizes the quantitative descriptors we have
developed for architectural comparisons of biofilm infections. The
volume ratio is the total volume of bacteria to the IBC volume. The
orientation histograms are colored green, blue, pink for the x,y,z ori-
entations respectively.

6 CONCLUSION

It is becoming clear that in many cases, current methods for clinical
investigation of biofilm infections are either insufficient or inac-

curate due to the amount of time required or their destructive na-
ture. An integral aspect of the nature of biofilms is their overall
architecture as well as the arrangement of the individual pathogens.
Indeed, in UPEC distinct architectural and morphological changes
occur through the three stages of its intracellular growth cycle [5].
Understanding and calculating these various properties in a quan-
titative manner can be important for identification of disease state
and potential susceptibility of an infectious organism. A non de-
structive 3D microscopy-based tool is ideal for meeting these needs.
Here we present new software, ProkaryMetrics, as a tool to fit these
requirements, providing 3D visualization and qualitative, as well
as quantitative, analyses for user-assisted identification of bacteria
from volumetric microscopy data.

In order to demonstrate the utility of the software, we have ap-
plied ProkaryMetrics to the visualization and analysis of a model
organism that is recognized as the causative agent of most urinary
tract infections: UPEC. As an infectious organism, it prefers intra-
cellular existence during the majority of its lifecycle. While intra-
cellular, it forms biofilm-like structures (IBCs) that are necessary
for pathogenesis [5]. Applying the software to an IBC of wild type
UTI89 and the UTI89AkpsF mutant, we have established signifi-
cant qualitative and quantitative differences between them in over-
all architecture and individual characteristics including IBC volume
and shape, as well as aggregate and specific orientation and length
parameters. While the software was developed with UPEC in mind,
it is generalizable and easily modified to handle any sort of organ-
ism. Currently, in addition to UPEC analysis, we are generating
analyses in collaboration with researchers studying non-typeable
Haemophilus influenzae. Furthermore, we are investigating com-
putational image analysis techniques for partially automated pro-
cessing of microscopy data to aid the user in identification [3].

Developing such algorithms, descriptors, and objective analyses
is necessary for accurate identification and comparison of clinical
biofilm samples in all stages of infection. Such non-destructive
imaging analyses will provide rapid and important guidance for
clinicians and improve the suite of tools available for disease as-
sessment.
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Trauma Analysis through Data-Driven Medical Injury Visualization

Patrick J. Gillich
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ABSTRACT

Scientists of all disciplines work in both the spatial and non-
spatial realm, and require visualization of data early in the process
of discovery. Visualization of multi-dimensional human trauma
data greatly enhances the communication and examination of data
for analysis. Translating medical coding into pictures enables
analysts to examine visual data to spot patterns, trends, outliers,
and to generally gain an increased understanding. A graphical
tool named the Visual Anatomical Injury Descriptor (Visual AID)
enables individuals to illustrate injury onto an anatomical figure
and perform discovery operations by inspecting injury patterns
using composite information.

KEYWORDS: Injury analysis, abbreviated injury scale, injury
scoring, wounds, trauma, and injury

INDEX TERMS: 1.3.2 [Computer Graphics]: Graphics Systems—
Stand-alone systems; K.8.1 [Personal Computing]: Application
Packages — Graphics

1 INTRODUCTION

Every branch of science needs to observe its unique phenomena
and each has its own specialized techniques for measuring and
collecting representative data. Many observed phenomena have a
meaningful, intrinsic spatial component. The spatial components
are often coupled to greater amounts of non-spatial components
for information discovery. To fully observe these, one needs the
subject matter expertise and instruments to measure and collect
data as well as the tools to visualize them.

Visualizations often produce appealing images that attract
readers to accompanying text in proximity. However, in scientific
disciplines that work in both the spatial and non-spatial realm,
visualization of data is useful very early in the process of
discovery. Translating numbers into pictures enables analysts to
examine visual data to spot patterns, trends, outliers, and to
generally gain an increased understanding. Data and analysis are
communicated more efficiently and effectively to a broader
audience through the use of illustration.

Visualization of multi-dimensional human injury data greatly
enhances the communication and examination of trauma data for
analysis. A graphical tool that allows individuals to illustrate
injury onto an anatomical figure has been constructed to support
this need. This tool is the Visual Anatomical Injury Descriptor
(Visual AID).
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2 OVERVIEW

Visual AID is a computer graphics tool developed by the U.S.
Army Research Laboratory to improve injury visualization and
effectively communicate trauma described by medical or
simulated data. Data visualization in Visual AID uses novel
techniques to represent the authentic relationships of source injury
data. Injury visualization is meant to communicate particular
insight and knowledge that is evident in the underlying data.
There are two main purposes for using Visual AID. The first is to
create visuals that illustrate known injuries for the purposes of
presentation. The second is to create visuals to aid in analysis and
data examination of the previously unknown. This allows the
analyst to facilitate discovery and identify trends or relationships
of note.

21 Background

Visual AID was developed following the success of several three-
dimensional human trauma images that were created by hand.
These images received acclaim from the community and
confirmed the value of high-resolution anatomical depictions.
The success of these images was due to their visual portrayal in
the spatial domain and the ease with which they could be
understood.  Previously, images used for injury description
consisted of the skeletal structure with a body outline, on which
injuries were manually marked with red dots.

The success of the initial illustrations prompted an immediate
demand to provide such an improved visualization capability to a
wider audience. Generation of the new illustrations required
three-dimensional modeling expertise and significant time for
construction. This process and the complexity and cost of the
graphics development environment were a significant technical
burden to the end users. A general-purpose tool that uses CAD
geometry in a controlled and limited manner was the preferred
option.

22 Application

Visual AID is a powerful, adaptable, and user-friendly application
that enables the efficient and effective communication of trauma
data. Its capabilities are driven by user input described either by
named anatomical locations or by a standard anatomical-based
injury classification system. The user can enter collections of
patient records and the tool will perform frequency analysis across
body regions and types of anatomical structures. Visual AID
creates illustrations in real-time onto a reference anatomical
figure, providing a quick and easy technique for describing trauma
data for analysis and information reporting.

Visual AID is a specialized tool for the non-3D modeler that
replaces a complex and tedious process that required expert
knowledge of 3D modeling and visual effects. Analysts with
medical records or simulated injury data are using the tool to
readily create detailed illustrations. Certified injury scorers are
using the tool to aid in coding and in the validation of coded
results. Medical and injury scoring educators can use the tool to
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communicate the significance of trauma and teach injury
classification.

3 INJURY CLASSIFICATION

Anatomical-based injury classification systems describe the
impact of an injury in terms of the extent of tissue damage and
generally define severity in terms of threat-to-life. Developed for
both patient triage for medical emergencies and as a predictor in
evaluating the impact of services or systems on patient survival,
these indices are currently being used to characterize survivability
of personnel in civilian and military scenarios. Injury type and
severity classification is critical for the evaluation of systems that
have requirements for personnel protection or mitigation of injury.

Visual AID integrates the current version of the Abbreviated
Injury Scale (AIS), the standard lexicon for coding individual
anatomical injuries that includes a consensus-derived estimate of
severity [1]. The AIS is the most widely used anatomical-based
injury classification system for characterizing personnel trauma.
This scoring system was introduced in 1971 and its current
version is AIS-2005 update 2008. This version contains
approximately 2000 injury descriptors. The AIS was designed to
distinguish between types of trauma of clinical importance as well
as types of trauma of interest to system designers and research
engineers. It is a valuable tool in the scientific study of the
epidemiology of trauma and trauma outcomes. It is used by the
government, academia, and industry for vehicle blast test
evaluation, vehicle crash investigation, clinical trauma research,
and is applied directly to records in trauma registries.

AIS-2005 is the culmination of the collaborative efforts of
many individuals from different disciplines, organizations and
nations. It is a major update of AIS that expands the number and
sophistication of injury descriptors, uses more modern
nomenclature, and captures subtle variations in injury. The AIS
classifies injuries across all body regions and types using a time
independent code. It considers only the injury and not its
consequences, with a few exceptions that include blood loss and
loss-of-consciousness. Hence, time dependent complications,
such as infection, are not classified.

AIS-2005 codes consist of a six-digit injury descriptor, which is
unique for each injury description, followed by a single-digit
severity score. A severity score is assigned to each injury
descriptor, using a six-point ordinal scale with levels that range
from 1 (relatively minor) to 6 (maximal or virtually unsurvivable)
(see Figure 1). This severity score is based on, but not limited to,
several components: threat-to-life, hospitalization requirement,
treatment complexity, treatment cost, treatment duration,
permanent impairment, and quality-of-life. The scale of the
severity score is not linear, in the sense that the difference
between a severity of 1 and 2, is not equivalent to the difference
between a 3 and 4. Therefore, it is improper to average AIS
severities.

A full AIS code for a given injury has seven numerals. For
example, the code 440606.3 represents a solitary diaphragm
laceration less then or equal to 10 cm in length. The first 4
indicates thorax as the body region, the 4 in the second position
indicates an organ; the next two digits are context specific to the
first two, where the 06 in places three and four indicate
diaphragm; the next two digits are context-specific to the first
four, where the 06 in the fifth and sixth positions, indicates a
laceration less then or equal to 10 cm in length. The 3 in the final
position is the severity score and specifies a serious injury.

4 CAPABILITIES

Visual AID is used to perform injury analysis based on
information from patient medical records or as a result of
modeling and simulation. Several different types of injury
analysis can be performed, including tissue damage analysis,
which uses injury data with limited resolution, injury severity
analysis, which uses higher resolution information to examine
single or multiple casualties, and injury frequency analysis, which
examines injury relationships in multiple casualties for a
collection of trauma-causing events.

AIS Severity Injury Level
1 Minor
2 Moderate
3 Serious
4 Severe

Maximal

Figure 1. AIS Severity Scale

4.1 Tissue Damage Analysis

Injury type and severity classification is a time-consuming effort
that requires specialized, trained personnel. In support of limited
or preliminary injury descriptions, Visual AID can be used to
visually identify damage to specific anatomical structures without
specifying the nature of the injury and severity. It uses the color
blue as a single severity-independent color to describe damage on
visual anatomical depictions. This allows trauma data to be
reported rapidly to data consumers in the spatial realm while using
gross descriptions of the non-spatial elements. These types of
images are typically used when patient injury details contain only
the specific anatomical structures damaged and lack the nature of
the injury and severity. This occurs when the necessary details
are not available or have not been finalized. An example use case
is when autopsy cases have not been finalized and only
preliminary information is available.

The images in Figure 2 are examples of tissue-damage injury
illustrations. Cross-hatching is used to indicate complete tissue
loss. Highlighting of body structures is used to indicate an injury
to that structure.

Figure 2. Tissue Damage Analysis Illustrations
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4.2 Injury Severity Analysis

Given injury type and severity classification, Visual AID can be
used to visually illustrate damage to specific anatomical
structures. Visual AID creates visual anatomical depictions using
a color palette representing the six AIS severity levels shown in
Figure 1. This allows trauma data to be reported in the spatial and
nonspatial realms, where elements of anatomical structures are
highlighted to indicate damage. This use of visualization encodes
information for a given injury and represents it through
placement, color, label and size. The image in Figure 3 is an
example of an injury description.

® Liver; laceration;
Rib Cage; fracture(s); Right and Left
Vertebrae C5, C6, C7 Fractures
Femur fracture; open; Left
Sternum; fracture [OIS 11, IIT]
Femoral nerve; Left
Cerebral Concussion;

® Carpal [wrist] joint; Right

Figure 3. Injury Severity Analysis Illustration

43 Side-by-Side Patient Analysis

For trauma-causing events involving multiple patients, Visual
AID can perform event-level visualizations to examine injury
relationships. A side-by-side visual comparison, as illustrated in
Figure 4, shows patient cases associated with a single event.
These cases can be grouped together by user-defined criteria.
Each patient is represented by a scaled-down image to support the
display of multiple figures adjacent to each other on the screen.
Injury commonality can be easily examined to identify similar
patterns by body region (i.e., thorax), type of anatomical structure
(i.e., skeletal), specific type of anatomical structure (i.e., sternum)
and severity (i.e., moderate). The benefit of this technique is that
it enables an event to be summarized pictorially, while at the same
time allowing the user to interact with the underlying data to
better examine event-level patterns.

Patient 1 Patient 2 Patient 3 Patient 4
% 2 3

&S
-~ =3

e

Figure 4. Side-by-Side Patient Illustrations

44 Cumulative Frequency Analysis

In addition to comparing sustained injuries side-by-side,
sometimes it is useful to categorize and count injuries over a
series of patients or events. Visual AID includes this capability in

the form of a frequency analysis mode, as illustrated in Figure 5.
Injury frequency can be examined across the total number of
patients or injuries. In this mode of operation, a unique
frequency color palette is used to illustrate data density. Injuries
are categorized by nature-of-injury and body region (e.g.,
traumatic brain injury, spinal cord injury, vertebral column injury,
torso and extremities).

Frequency of injury is illustrated either by body region or type
of anatomical structure. The user can control what is visualized
through filters on severity and type of anatomical structure, and
perform data queries to keep and remove aspects of the patient
data records.

Standardized medical data selection and reporting combined
with several unique visualization techniques allows Visual AID to
classify injury by type and anatomical region in a novel manner.
This functionality provides a manageable number of clinically
meaningful diagnostic categories that characterize nature-of-
injury and body region categories. This process: a) simplifies the
process of classifying injuries; b) provides a standard format for
reports; c) serves as a standard for comparative studies; d)
characterizes patterns of injury.

Skeleton Qrgans

)
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N Patients

Figure 5. Frequency Analysis Illustration

5 CONCLUSION

The Visual AID tool has been implemented and is currently being
used to visualize and analyze injury, with associated threat-to-life,
and the distribution of wounds and underling injuries. It uses
AIS-2005 update 2008, a precise anatomical injury classification
standard, as its foundation of anatomical injury scoring. Visual
AID allows visualization of wounds and associated injuries onto a
three-dimensional anatomical model of the human body and
allows the user community to easily create detailed injury
illustrations.
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ABSTRACT

We present an iterative visual analytic method for exploring large
multivariate datasets in biological applications. By integrating
terrain visualization, an interactive interface, and an iterative
refinement model, a user can integrate their domain knowledge to
explore large datasets based on individual analysis objectives.
This domain neutral visual analytic system facilitates a reason-
based understanding of large, abstract datasets. A case study in
biomedical gene expression analysis demonstrates effective and
interpretable data mining results.

KEYWORDS: Visual analytics; machine learning, information
visualization

InpEx TERMs: H.3.3 [INFORMATION STORAGE AND
RETRIEVAL] Information Search and Retrieval — Query
formulation and relevance feedback; H.5.2 [INFORMATION
INTERFACES AND PRESENTATION] User Interfaces — user-
centered design;

1 INTRODUCTION

A primary reason for processing data is to discover hidden
knowledge for better decision making or problem solving, but this
rationale is often decoupled from computational analysis. Human
beings and computers have complementary advantages in
information processing that can be integrated using Visual
Analytics (VA), a developing “science of analytical reasoning
facilitated by interactive visual interfaces”

VA is useful when massive amounts of data not only
overwhelm the analysts, but also when traditional data analysis
and mining techniques fall short. Automatic data analysis or
mining models search for optimal solutions after the objectives of
the computing tasks are defined. However, for many of today ‘s
data sets, the meaningful patterns and hidden knowledge are not
known beforehand, hence it is hard to formulate the goals of
discovery in the first place. VA can leverage human perception,
intelligence and reasoning capability, and cooperate with high-
speed computing to solve complex problems.

We present several Visual Analytic operators that allow a user
to interactively explore related data that are responsive to different
input features. A novel 3D terrain visualization provides an
intuitive overview of the effects of different features on the most
relevant data objects. An iterative refinement model allows the
user to gradually change the input features, asses their effects, and
continuously improve their learning model by using Terrain
Analytic Operators. Since the user is constantly involved in each
iteration of the model, their understanding of the data can evolve

to clarify their analysis.

We apply our Iterative Visual Analytic system to the study of
gene expression patterns in human breast cancer molecular
networks. Cancer biomarker panels of differentially expressed
genes in molecular interaction networks are analyzed to identify a
simpler characteristic signature gene subnetwork group that is
sensitive and specific for identifying breast cancer. Such
characterization, which would have involved careful design of
machine learning methods tailored to the cancer gene expression
and cancer molecular network data sets, can help biologists with
little formal computer training, yet vast biological domain
knowledge, generate high-quality hypotheses quickly.

2 ReLATED WORK

Visual Analytics is a relatively new field that seeks to facilitate
analytical reasoning through the use of visual user interaction. It
emphasizes a tightly coupled interaction between the user and
machine to solve problems that may be otherwise intractable[[1]]
It is a multidisciplinary field and is related to information and
scientific visualization and data mining

It is often desirable to reduce a large set of multivariate features
to a more manageable predictive subset. Previous automated
methods for finding satisfactory feature subsets in both supervised
and unsupervised machine learning require a quantifiable metric
for evaluating feature sets. When analyzing complex data sets, it
is likely that a user’s analysis goals may change as they explore
the data, and traditional methods are not designed for that.

There have been many techniques for visualizing high-
dimensional data sets[[2JF[7]} but these designs rarely assist users
to track the development of associated insights and knowled ge.
The interactions with these systems are not designed to allow user
feedback to effectively drive the underlying data analysis model.
To tightly couple interactive visualization with a user’s reasoning

process remains an early research topid[8]}[10]]
3 MeTHODS

3.1 Framework: An overview

This Iterative Visual Analytic method allows a domain-expert
user with minimal formal computer training to seek correlations
between a set of feature vectors and a set of data objects, with
several objectives in mind:

Multivariate feature selection — The user selects a set of
feature vectors and is presented with a meaningful representation
of their connection to the current set of data objects.

Allow user to guide search based on domain knowledge —
Sets of feature vectors and data objects should represent objects
that are familiar to the user and meaningful in their domain. The
user should always be aware of how changes to the feature set
affect the visualization and be able to easily interpret those
changes based on their goals.
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Contour Map
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Figure 1 — Terrain Visualization, a 2D base network
of assodiated terms and interpolated height values
based on each nodes response to an input feature

Clearly visualize relevant correlations - A user should be able
to easily identify which data objects correlate strongly with the
current feature vector. It should be clear whether the correlation is
specific to individual data objects or represents a response from
many neighboring data objects.

Provide domain-neutral tools for use in domain-specific
applications - A 3D Terrain visualization represents a set of
associated domain-specific terms and their response to a set of
features. Using TAOs, the user constructs and compares terrain
visualizations to modify and analyze their input features. This
robust visualization and analysis technique allows the user to
assess the effects of different feature sets on a wide variety of
terms of interest. Feature sets are iteratively selected and refined
by the user to improve the sensitivity and specificity for terms of
interest.

3.2 Terrain Visualization Techniques

Our 3D visual terrain represents the response of a network of
associated domain terms to an input set of features.

1. Networks of domain terms are represented as a node link
graph and arranged on a 2D layout. Nodes represent a related
set of terms that are dependent on the domain application,
and weighted edges represent any hypothesized associations
between those terms. The graph layout algorithm uses a
node-weight edge-weight method of GeneTerrain|[12]

2. For asingle feature vector, we calculate a scalar response
variable for each node. For every point on a regular grid on
the 2D layout, we use Shepard’s interpolation to calculate a
height value based on the response variable of surrounding
nodes: Using VTK, we render a terrain based using those
height values.

For multiple feature vectors we calculate a consensus terrain,
where the height of each point in the response terrain is the mean
average of the heights for each of the single-feature vector
terrains.

3.3 Terrain Analytic Operators for Iterative Visual
Refinement

The Terrain Visualization described above allows a user to

quickly assess the relatively predictive power of a set of features

for a group of related nodes. Our Iterative Visual Refinement
Model allows the user to search for a set of features with
improved prediction rates.

The model iteratively adds or removes features from the current
candidate group. It uses 3 TAOs to loop through three steps:
TAO_CONSTRUCT, TAO_COMPARE, TAO_MODIFY
(TAO_ADD and TAO REMOVE). The biologist can stop the
search once an effective set of features is found.
1.TAO_CONSTRUCT - Update and Visualize Terrain:

Input — Set of one or more feature vectors

Function — Construct terrain as described in 3.2. The term

association network is the base network and the feature is the

response variable. If there is more than one feature in the set,
construct the consensus terrain of the feature set.

Output — Render and display the terrain.

2. TAO_COMPARE - Assess Performance:

Input — Set of two or more displayed terrains
Function — Visually evaluate the specificity of a targeted node
by observing the terrain profile and comparing it to previous
iterations. This decision making process is partially subjective
and can be based on criteria such as: (a) Whether the target
node has a dominant and characteristic landmark features on
the terrain. (b) Whether profile noise caused by other nodes is
tolerable; although a node may reduce the specificity of other
targeted node(s) this noise can be acceptable. (c) The current
number of the features in the feature set.

Many more criteria can be added, depending on the user’s

domain knowled ge and specific requirements of the application.

The iterative visual analytical process helps the user make

flexible decisions and search for an improved solution. At the

end of this step, the user will either proceed to step 3 or
terminate with current or previous sets.

Output — Set of features corresponding to user-selected terrain.

3. TAO_MODIFY - Alter input features:

Input — Set of features from TAO_COMPARE and a subset of
features to be added or removed

Function — Apply TAO_ REMOVE or TAO_ADD to current
feature set

Output —M odified set of features.

TAO_REMOVE - A series of newer signatures is obtained by
removing one feature at one time. For example, given a
signature with features A, B, C and D, evaluate signatures of
BCD, ACD, ABC.

TAO_ADD - If the user knows that certain features might
improve specificity, these can be added for assessment. For

BCL6 HUMAN max Breast Cancer—
ERBB2 HUMAN | height
CD44 HUMAN
KIT _HUMAN
IGF1IR_HUMAN
min
height

Figure 2 — Terrain Visualization of initial biomarker
signature. Diseases are laid out in the x-y plane,where
near proximity to neighboring diseases represents higher
co-occurrencew ith respect to potential biomarkers. The
height of each peak represents a disease’s response to
the current five-biomarker panel. Color is mapped to
terrain height for clearer viewing.
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TAO_REMOVE
-KIT HUMAN

-BCL6 HUMAN -CD44 HUMAN

AR QA

@ (b) (©

Figure 3 - TAO_REMOVE generates 4-marker panels. TAO_CONSTRUCT renders five terrains,
and all results are displayed to the userw ith TAO_COMPARE.

example, if we suspect that E is a good feature, newer

signatures EBCD, EACD, or EABC are given as inputs to Step

1.

Continue iterating from Step 1-3 until satisfied with the

results.

4. Termination: Render the final terrain of the feature set with the

optimal response. Assess the improved classification rates of
the new feature set.

4 BioMOLECULAR AND DiseAsE NETWORK TERRAINS

A case study applies our Iterative Visual Analytic framework to
biomarker discovery. Networks of diseases are often correlated
with gene expression values and a sensitive and specific panel of
biomarkers for disease(s) is desirable.

In this case study, to identify a biomarker signature with high
disease sensitivity and specificity for breast cancer, we began with
a set of 5 biomarkers with the highest individual rank for breast
cancer  prediction: BCL6 HUMAN,  ERBB2 HUMAN,

ERBB2_HUMAN
CD44_HUMAN
KIT_HUMAN
IGFIR_HUMAN

- IGFIR_HUMAN -KIT_HUMAN

-ERBB2 HUMAN

-CD44_HUMAN

(a) (b) © (@

CD44_HUMAN, KIT_HUMAN,
IGF1IR_ HUMAN.We began with cancer
association scores for 54 cancer types
derived using a method from biomedical
literature mining,

In Figure 2, although the profile of the
initial feature set has breast cancer as a
distinct  peak  (suggesting  high
sensitivity), there is a large amount of
noise, so the specificity needs to be
improved.

Figure 3 shows the resulting disease
terrain profiles after the initial signature
is modified. Now the user assesses
performance. Removing
BCL6_ HUMAN  from the initial
signature significantly reduces the noise
in the circled region in (a); removing
CD44 HUMAN  from the initial
signature only slightly reduces noise in
the circled region in (b); removing
KIT_HUMAN from the initial signature
slightly reduces noise in the circled
region in (c); removing ERBB2 HUMAN from the initial
signature greatly introduces more noise over all the profile in (d);
removing IGFIR_HUM AN does not result in visible changes in
the profile (e).

The above indicates that removing BCL6. HUM AN has the
most improved profile due to the significant noise reduction.
Therefore we only accept the modification of removing
BCL6_ HUMAN.

The signature of the current 4 marker panel still does not yield a
satisfactory profile, so we continue with the Modify Signature
step and constructed terrains for the newer signatures in figure 4
(a)-(d). Removing KIT _HUMAN (a) results in the best profile.
At this point the biomarker panel includes ERBB2 HUM AN,
IGFIR_ HUMAN and KIT HUMAN. When comparing the
disease terrain profiles of the initial signature (5a) and the
signature after iterative refinement model (5b), one can see that
the newer signature has much less noise in the profile therefore
has an improved specificity to the breast cancer.

To further build on the current best
signature, two additional signatures are
defined by removing IGFIR_ HUM AN
and CD44 HUMAN. Based on images
generated by last two iterations,
ERBB2_HUM AN is not removed.

The user observes that Figure 5(b)
represents a better improvement than
ERBB2 HUMAN and CD4 HUMAN
(not displayed). The signature of two
biomarkers, ERBB2 HUMAN and
IGFIR_HUMAN, is satisfactory and we
proceed to Step 4.

The final gene signature
ERBB2 HUMAN and IGFIR_HUM AN
(Figure 5b) significantly improves the
expected  disease  sensitivity and
specificity of breast cancer. The user can
now use this biomarker panel for
creating a classification system or
conducting future experiments.

-IGF1IR HUMAN

(e)

-ERBB2 HUMAN

Figure 4 — Additional iteration with 3-marker panels
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Lower

specificity

(a) Inttial Disease Terrain from top 5 biomarkers

High peak
good sensitivity

neighbouring
peaks indicate improved

indicates

(b) Final Terrain ERBB2_HUMAN and
IGFIR_HUMAN

Figure 5-Improved sensitivity and specificity in final panel

5 DiscussION

We introduced a domain-neutral Iterative Visual Analytic
framework for large scale data analysis. We demonstrated that 3D
terrain visualization can intuitively assess gene biomarkers for
detecting Breast Cancer. Terrain visualization has also been
shown to be an effective way to visually explore sensitive and
specific biomarkers for Alzheimer’s disease|[12]|and correlations
among cancer and gene term networks |[13]| This interactive
system allows a user to apply their domain knowledge to reduce
the complexity of a problem and to make reason-based
refinements to their analysis as they explore large datasets.
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ABSTRACT

This paper explores the design of Kalm, a mobile
anxiety management application. Based on cognitive
behavioral therapy (CBT) methodology, the application
will be a source of support, education and
entertainment for the user. Clinicians may use it to
establish a baseline anxiety experience, prescribe
and/or monitor CBT homework. The application’s
interface must present potentially large amounts of
data in such a way that it is both intelligible and
relevant to the two stakeholder groups, users and
clinicians.

We also aim to create an interface that is intuitive and
accessible to differently-abled users. This paper
explores methodology to analyze, filter and illustrate
feedback from the various activities of the Kalm
application. The design of the interface for this
application will contribute to the design of ubiquitous
health applications on mobile devices.

Categories and Subject Descriptors
D.m  Miscellaneous Software Psychology, H.m
Miscellaneous Information Systems.

Keywords

Personal health informatics, mobile technology, mental
health applications, ubiquitous healthcare, persuasive
design, gamification, serious games.

INTRODUCTION

At some point everyone has felt the racing heart,
sweaty palms or nausea of anxiety - it affects all ages,
genders and cultures. When it gains momentum
heightening to the level of an anxiety disorder,
therapeutic intervention is recommended. Almost 50%
of Americans will meet the criteria of an anxiety
disorder in their lifetime [2]. Nearly 75% of those with
an anxiety disorder have their first episode by age 22,
making early intervention crucial [9].

Though empirical studies have found CBT methodology
effective, the therapy is often inaccessible to the people
who need it due to cost, distance or the availability of a
qualified therapist [6]. This results in many people
with anxiety disorders - both subclinical and clinical -
not receiving appropriate assistance. The burden of
illness for anxiety is far reaching; suffers are at
increased risk for depression, substance abuse and
suicide if the condition is left untreated [8].

Cognitive Behavioral Therapy

The evolution in psychological treatment for panic-type
disorders has been rapid during the past 15 years.
Recent cognitive-behavioral treatment protocols for
anxiety and panic disorder consist of a multifaceted set
of interventions, supplemented by homework. The
homework reinforces positive attitudes and behaviors;
paper questionnaires are most often used to collect this
data. The data is taken back to therapy, where the
clinician then gives the patient feedback on the
information collected. Often patients forget to do this
homework and return with incomplete or falsified data,
setting back the therapeutic process.

Kalm Application Overview

The Kalm application is not a new direction for anxiety
intervention, but rather a new tool based on CBT
therapeutic techniques. The tool offers an abundance
of user data points that were previously unavailable to
clinicians, as well as real-time feedback for the user.
Cognitive behavioral therapy’s interventions are aimed
at influencing mood, emotional reaction and behavioral
patterns through the focused practice of new ways of
thinking and acting. Based on these tenants, Kalm’s
activities present a holistic approach to increase the
users' self-efficacy in the management of their anxiety.
In addition to education about maladaptive and positive
behaviors, the application guides the user through
activities designed for use during times of heightened
anxiety. Additional components include:

e A heart rate monitor

e A music-based activity to slow the user’s heart
rate when anxious

e Games designed to reinforce positive behaviors

e Push notifications for the user to self-regulate
their interactions with the application

e Functionality for users to email their log data
to themselves or a support person

e An anxiety tracker for users to chart their
moods alongside contributing environmental
and internal factors

The feedback screens for each of these activities shape
user experience, particularly the visualization for the
anxiety tracker. These screens provide the information
users need to accurately evaluate their performance
over time. Our assumption is that the presentation of
the data may not be enough to promote self-awareness
or persuade the user to modify their thoughts and
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behaviors in a positive way. More embellishment may
be necessary to evoke change.

M obile Health Appsin Practice

As mobile computing becomes part of our daily lives,
its technologies affect the way we access and use
information - medical and otherwise. This s
particularly true for the millennial generation, a
population at home with technology, games and
applications [13]. The use of mobile device technology
for mental health education and skill practice is
perfectly suited to this demographic. A 2010 Carlson
Marketing research study reported that 73% percent of
teens and 93% of adults ages 18-29 own cell phones in
the U.S. [4]. Of the teens with Internet access on their
devices, 31% percent reported getting health, dieting
or physical fitness information online [4]. If these
trends are any indication, these numbers will only rise
with time. With this rise comes the necessity for new
mobile interface requirements.

The feedback mechanisms of three mobile applications
inform the design of Kalm. All of the applications were
designed to collect and present health related data,
with the intent of fostering positive change in the lives
of users. Moody Me, Bant and Mood Map all approach
persuasive design in novel ways.

1.1.1 Bant

Created by the University Health Network and SickKids,
Bant promotes health management for diabetic
adolescents. The iPhone application supports teens in
accurate decision making, helping them make medical
adjustments for optimal health [11]. Teens can
customize their inputs to categorize readings according
to their activities and daily schedules. They earn
experience points within the application that translate
to the real world - they are rewarded with iTunes
redemption codes to purchase music and other apps.
Preliminary research on Bant has been very positive;
research currently underway should shed light on
mobile management of chronic disease with a youth
population [11].

The two screens show here are for data input and
feedback (figure 1). On the readings screen users
select the meal that they want to do a glucose reading
for. They then drag the colored dot associated to that
meal into the graph area, which charts time of day
against the glucose concentration of the meal. If the
concentration hits the user-determined optimal range,
the dot will fall within the blue section. Bant shows a
graphical summary of these data points along their
concentration ranges over time in the trends screen.

The Bant interface summarizes the data points well and
allows for a good deal of organizational customization.
Deviations from optimal are easy to find at a glance; it
also clearly denotes fluctuation trends in the glucose
readings. The information provided relies too heavy on
color to differentiate between data points; it would be
impossible for a color-blind, low-sighted, or blind user
to use [7].

Figure 1. Bant I nterface for readings (data collection) and
trends (summary) [3]
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1.1.2 Moody Me

Like Bant, Moody Me is also available through the
iTunes store. The input screen is also the splash
screen; the user swipes horizontally to find the smiley
face that corresponds best to their current mood. The
input screen tells the user what their average mood
was for the past 7 days; for information on a greater
period of time one must access the mood distribution
graphs. The graphs chart the 7 mood options against a
percentage scale and time.

Figure 2. Input and summary screenshots from Moody Me

The smiley faces in Moody Me are a major departure
from most applications that rely solely on numerical
graphs for feedback. The faces are easy to understand
and speed data input. While the user may change the
symptomology related to the faces, they may not
change the actual faces or labels. Moody Me does not
allow users to share their information with a clinician.
Even if the functionality was included, it would be
difficult for a clinician to get relevant data from a
summary lacking numerical values (figure 2, left).
Moody Me is most useful for the user desiring short
term correlations or summaries.
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1.1.3 Mood Map

While not commercially available, Mood Map was part
of a qualitative exploration of how people adopt mobile
therapies. Like Kalm, the Mood Map prototype offers
functionality for users to track their moods in addition
to exercises to practice relaxation techniques and
positive behaviors. During the one month field study
the application prompted users to log their moods
several times a day, using randomized push

notifications. While the study’s focus wasn’t design it
did use user centered design techniques; it also shed
light on user’s willingness to use mobile therapies,
which was promising.

Figure 1. Mood M ap

1.2 Thelnterface of Kalm

We aim to create an interface that is intuitive and
accessible to differently-abled users. Our definition of
intuitive use - the subconscious application of prior
knowledge - is defined by the German Intuitive Use of
User Interfaces group [10]. An intuitive application
results in: a low subjective mental workload, high
perceived achievement of goals, low perceived effort of
learning, high familiarity based on prior knowledge and
a low perceived rate of error. Based on this definition
the QUESI, questionnaire for the subjective
consequences of intuitive use, will be used to evaluate
the intuitive qualities of the application.

It is important to note that the evaluation of
intuitiveness of the interface is not a measure of the
actual content of the application. The QUESI uses a 5
level Likert-type scale but focuses on the consequence
of use, rather than the features of the application. All
of the questions are phrased in a way that higher
scores represent a higher probability of intuitive use for
example, “I could use the system without thinking
about it” or “the system helped me to completely
achieve my goals.”

1.2.1 Anxiety/Experience Tracker

The reporting scales used within Kalm are based on the
Multicenter Panic Anxiety Scale (MC-PAS, formerly the
CY-PAS), the Sheehan Disability Scale, and the Beck
Depression Inventory. The MC-PAS includes a four
point scale that rates panic frequency and intensity,
anticipatory anxiety, avoidance of sensations and
situations, and impairment in work and social
functioning. The SDS is a four-item self-report
measure of impairment and the BDI is a well-validated

measure of depressive symptomology. The scales used
within Kalm represent a blend of self-rated disability
and clinician-rated impairment measurements. The
data from these reporting scales will be relevant to
both the user and clinician if used in conjunction with
therapy.

Sound will be used to describe and reinforce the
imagery and information used in the application. Since
chart embellishments can prove useful for intelligibility
and recollection, we will repeat visual and aural
metaphors across all of the various activities of the
application [14].

1.22 Games

Games are a good way to practice CBT homework while
in a safe environment, particularly non-twitch based
games (those requiring fast reflexes). The visual
metaphors used in game can reinforce the information
learned in the rest of the application. When gameplay
incorporates a positive feedback loop, the experience
becomes motivation to return to both the application
and the game itself.

Game devices using a joystick for navigation often
highlight associated menus and icons, subconsciously
focusing the user’'s gaze to the most relevant icon
position. Touch-based devices do not need a cursor in
this capacity, since icons are acted on by touch. The
navigation of Kalm’s games present a special challenge
due to a small amount screen space for gameplay and
information.

The games for Kalm are informed by a touch scheme
similar to that used in the game Rolando. Developed by
Handcircus, Rolando is a platform game with puzzle
elements that circumvents the iPhone’s lack of screen
space. All of the movements required by the game can
be performed by using one’s thumb; the interface then
highlights all possible movement directions on the
screen.

Figure 3. Rolando gameplay interface

Qs
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The games will use little to no text; instead repeating
the graphical icons and sound cues used throughout
the other activities.

Discussion & Future Work
The smartphone is a viable venue for the presentation
and practice of psychological health information. The

62



creation of Kalm follows methodology conceived to
support mobile interaction design [10, 5]. The use of
Kalm returns a richer, larger data set than CBT
information traditionally gathered with pen and paper.
The feedback given by the application influences how
users experience and perceive their own anxiety, so
care must be taken when designing the interface and
visual analytics of the system. Additionally, clinician
input is necessary to identify counter-therapeutic
practices or behaviors created by the use of the
application.

Kalm is a tool designed to support patient
accomplishment of self-management goals; beyond
that it could be used as a platform for communication
and collaboration between user and clinician. By
providing an inexpensive, downloadable application, we
believe that the number of individuals with access to
CBT methodology will increase substantially. This is
important not only for suffers but for any entity facing
rising health care costs and barriers to providing quality
mental health care.
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BodyTrack: Open Source Tools for Health Empowerment through Self-Tracking
Anne Wright and Ray Yun, BodyTrack Project, CREATE Lab, Carnegie Mellon University

The BodyTrack project has interviewed a number of people who have improved their health by
discovering certain foods or environmental exposures to avoid, or learning other types of behavioral
changes. Many describe greatly improved quality of life, overcoming in some cases chronic
problems in areas such as sleep, pain, gastrointestinal function, and energy levels. In some cases,
a doctor or specialist’s diagnosis led to treatment which mitigated symptoms (e.g. asthma or
migraine headache), but where discovery of triggers required self-tracking and self-experimentation.
Importantly, the act of starting to search for one’s sensitivites or triggers appears to be empowering:
people who embarked on this path changed their relationship to their health situation even before

making the discoveries that helped lead to symptom improvement.

The BodyTrack Project is building tools, both technological and cultural, to empower more people to
embrace an “investigator” role in their own lives. The core of the BodyTrack system is an open
source web service which allows users to aggregate, visualize, and analyze data from a myriad of
sources -- physiological metrics from wearable sensors, image and self-observation capture from
smart phones, local environmental measures such as bedroom light and noise levels and in-house
air quality monitoring, and regional environmental measures such as pollen/mold counts and air
particulates. We believe empowering a broader set of people with these tools will help individuals
and medical practitioners alike to better address health conditions with complex environmental or

behavioral components.

We propose to demonstrate the current status of the BodyTrack tools and describe how we are
using these tools to empower individuals to more powerfully explore their situation, and to enhance

their ability to communicate and collaborate with their doctors and other health care providers.
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Demo of VISCARETRAILS: Visualizing Trails in the Electronic
Health Record with Timed Word Trees, a Pancreas Cancer Use
Case

Lauro Lins, Marta Heilbrun, Juliana Freire, and Claudio Silva

October 1, 2011

In this session we will demonstrate VISCARETRAILS, a system to visualize aspects of event sequences
datasets (e.g., set of patient histories). VISCARETRAILS features as its central display a visualization called
Timed Word Trees, a generalization of Word Trees. The dataset we will use to demonstrate VISCARETRAILS
consists of health care events on pancreatic cancer patients.

VISCARETRAILS supports the following pipeline: (1) a set of time-stamped event sequences is loaded into
the system; (2) group-events are defined as needed (STAGE III in Figure 1 is a group-event that means either
event III, IITA, IIIB or IIIC); (3) a timed word tree is generated by dragging and dropping events and/or
group-events into the central canvas (in Figure 1, stage events & DEAD were dragged and dropped into the
canvas); (4) one of the dropped events is defined as the root event (by default the root is the first element that
was dropped in the visualization, but a user can change the root event at any time); (5) the visual summary
generated is inspected to understand paths that end and start in the root event; and (6) path nodes are selected
to obtain survival curves for the sequences. Figure 1 shows survival curves of the selected stage nodes (red,
green, purple, and orange paths): bottom left widget. The visual summary conveys information about frequency
of events (larger fonts and thicker transitions means more sequences going through the path), time distances
(based on average times) of the events relative to their parent event; and a hint on the dispersion (i.e., standard
deviation) of time distances in each event transition (i.e. the hue of blue darkens as the standard deviation of
the time distance decreases). On the second bottom widget (from left to right), we show a box-plot for the time
distance distribution from the selected events to the root event.

a.n.n MigCareTrails; Timed Word Trees for EHR (Dataset 631 patients, 17780 events)
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Figure 1: VISCARETRAILS session on a dataset of pancreatic cancer patients
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Food For The Heart: Visualizing Nutritional Contents for

Food Items for Patients with Coronary Heart Disease
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1 INTRODUCTION

We introduce a web-based interactive nutrition-based food selec-
tion tool for patients with Coronary Heart Disease (CHD), called
“Food ForThe Heart (FFH),” inspired by a multivariate infor-
mation visualization tool, called Dust & Magnet [1]. FFH visual-
izes four core nutritional components (sodium, fiber, saturated fat,
and cholesterol) of more than 30,000 food items in two different
visualizations, a bar chart and the Dust & Magnet view, upon
user’s request. In particular, The Dust & Magnet view provides an
overview of multiple food items based on the four core nutritional
components in a two-dimensional pane so that a user can easily
find which food items are suitable for their diet.

2 DESIGN DETAILS

FFH is a web-based dietary intervention system whereby a user
can evaluate multiple food items based on their nutritional con-
tent. The main page is designed as shown at the top. It consists of
five segments labeled them from A to E with red borderlines for
convenience. Each segment is described below :
¢ A (Search Box): A user can enter the name of a food item
(e.g., chicken) or search by brand names (e.g., McDonald’s).
* B (Search Results): A list of food items generated by an en-
tered search query. The nutritional content of each item can
be found in two graphs, C and D, upon the user’s click. Each
item could be inserted into one of the meal boxes in E.

¢ C (Nutrition Chart): The chart visualizes accumulated nutri-
tion values of food items selected from B across the four nu-
tritional components (sodium, saturated fat, fiber, and choles-
terol) per day. The Y-axis indicates the percentage of the
recommended amounts (100%) of each nutritional compo-
nent.

* D (Dust & Magnet): Using the dust particles (food items) and
magnets (four nutritional components) metaphor, the system
spreads out food items based on the amount of each nutri-
tional component. For example, the more sodium in a food
item, the closer it is positioned to the sodium magnet.

¢ E (Diet Plan): Food items inserted from B can be seen here.
A user can also view dietary intake from previous days by
switching dates.

3 DEMONSTRATION

The demonstration will walk through how a user can control
his/her diet plan by using this website. The audience will partici-
pate in using the system on the fly by adding their favorite food
items to see how healthy their choices are. The demonstration will
provide insights about how we can help patients control their diet
by leveraging the power of visualization systems.
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ImageVis3D Mobile in Clinical Use

Jens Kriger*

Figure 1: ImageVis3D Mobile displaying a contrast-enhanced CT
scan of a human male. High-quality imagery can be streamed
from more capable rendering resources, or rendered directly on
the device.

1 Introduction

While there have been a variety of research applications developed
for mobile platforms [2, 1, 6, 5, 8, 9], there has been less work in
applying such techniques in a clinical setting. A notable exception
is Meir and Rubinsky’s work [7], which attempted to use a mobile
system to improve cancer diagnosis. Despite this, there has been
no publicly available open platform for the deployment of mobile
medical visualization systems.

ImageVis3D Mobile (“IV3Dm”) is a visualization application
for mobile devices, enabling physicians to bring clinical practice
to the point of care. Using IV3Dm, visual feedback can be dissem-
inated to trained professionals to aid them in interpreting data,
feedback from other physicians can be obtained in chance ‘hallway
meetings’, and patient data can be communicated directly to the
patient in a manner they can interpret and understand.

2  From Supercomputer to Tablet

ImageVis3D Mobile and its desktop counterpart, ImageVis3D,
run on supercomputers and tablets, as well as everything in be-
tween [3]. Using the desktop version of ImageVis3D, one can
visualize data of unlimited size using commodity workstations [4].
This data-size-agnostic feature has become critical as modern
scanners continue to produce scans which are a challenge to view
in anything but two dimensions. ImageVis3D allows high resolu-
tion three-dimensional reconstructions of CT and MRI data (as

*IVDA, DFKI, Intel VCI, SCI
fSCI

Thomas Fogal'
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Figure 2: Initial application of ImageVis3D Mobile: providing
visual feedback for setting deep brain stimulation parameters.

well as a variety of other data types), in an easy to use, lightweight
application. We continue to expand our exploration of extensive
computing installations to render larger data in real time.

However, we believe the revolutionary aspect of this software
system is in its ability to visualize one’s data on mobile devices.
This software enables physicians to look at data in an entirely
new dimension, uncovering aspects which have never been visible
before. An ‘always on’ device for medical visualization opens up
new avenues for collaboration and data dissemination which are
not possible in a more traditional clinical setting.

3 Zero Infrastructure

A common problem with novel medical visualization techniques
is transferring them from a research environment to clinical prac-
tice. Scalable infrastructures must be created and maintained,
entailing laborious procedural red tape and excessive per-client
configuration. With ImageVis3D and ImageVis3D Mobile, these
boundaries are quickly being broken down. We are developing a
cloud-based infrastructure to enable new research groups to uti-
lize the system with 0 configuration. Since the client software is
open source and freely available, installation is as simple as down-
loading any other application. Utilizing platforms that physicians
own personally and already carry with them regularly ensures that
there is no administrative overhead to applying the system.

4 Effective in Practice

Our first application of IV3Dm in a clinical setting has been in
the area of deep brain stimulation (DBS), more specifically for
the treatment of Parkinson’s disease. For the process to be suc-
cessful, a DBS planning ‘programmer’ must work with the patient
to provide individualized stimulation parameters. This can be a
lengthy process using the abstract ‘set and test’ method which
is the standard of care, but using the visual IV3Dm platform as
shown in Figure 2, clinical support staff can perform the operation
an order of magnitude more quickly.
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DEMO:
AnamneVis: A Framework for the Visualization of Patient History
and Medical Diagnostics Chains

Zhiyuan Zhang', Faisal Ahmed', Arunesh Mittal’, IV Ramakrishnan’, Rong Zhao', Asa Viccellio?, and Klaus Mueller’
'Computer Science Department and Center for Wireless and Information Technology (CEWIT)
®Department of Emergency Medicine

Stony Brook University

The medical history or anamnesis of a patient is the factual information obtained by a physician for the medical diagnostics of a patient.
This information includes current symptoms, history of present illness, previous treatments, available data, current medications, past
history, family history, and others. Based on this information the physician follows through a medical diagnostics chain that includes
requests for further data, diagnosis, treatment, follow-up, and eventually a report of treatment outcome. Patients often have rather complex
medical histories, and visualization and visual analytics can offer large benefits for the navigation and reasoning with this information.
Here we will demo AnamneVis, a system where the patient is represented as a radial sunburst visualization that captures all health
conditions of the past and present to serve as a quick overview to the interrogating physician. The patient’s body is represented as a stylized
body map that can be zoomed into for further anatomical detail. On the other hand, the reasoning chain is represented as a multi-stage flow
chart, composed of date, symptom, data, diagnosis, treatment, and outcome.

Our health care informatics prototype aims to provide a comprehensive multi-faceted assessment of the patient and his (her) history for
intuitive information retrieval by the physician. The goal is information organization and integration along these various aspects. Overview
and detail-on-demand requires hierarchies, and effective information organization requires robust encoding by ways of well-established
criteria — we use standard codes commonly used for billing in hospitals which enables us to easily build our system on top of an existing
health care information system. These codes are ICD, CPT, and NDC. ICD is the code used to describe the condition or disease being
treated, also known as the diagnosis. CPT is the code used to describe medical services and procedures performed by doctors for a
particular diagnosis. NDC is the code used for administered drugs. Further goals, often expressed by our collaborating emergency
physician are ease of information access and flexibility in displayed aggregated information and data. To enable this functionality, our
system is fully interactive and the displays are fully linked and coordinated. In the following we show snapshots of these displays.

The hierarchical radial display is used primarily to show information about the patient. There are three cooperating displays: (1)
symptoms and diagnoses, (2) procedures and treatments, (3) data. These three displays are interlinked to allow doctors to obtain a full
picture of the patient as well as assess existing relationships. Two examples of this display are shown in Fig. 1.

The sequential display is used mainly to demonstrate the medical diagnostic flow. The medical records are organized by an underlying
graph data structure. Each node corresponds to one incident (medical primitive), which could be a doctor visit, symptom, test/data,
diagnosis or treatment. Edges represent relationships. An example of this display is shown in Fig. 2.
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Figure 1. Sunburst display for patient information. Figure 2. Sequential display for medical diagnostics chain.

Acknowledgments: We would like to express our deepest thanks to the UC Berkeley Visualization Lab and Stanford HCI group to make
available the very helpful Flare toolkit, which we used as a basis and extended non-trivially for the system presented in this work.
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LifeFlow: Understanding Millions of Event Sequences in a Million Pixels

Krist Wongsuphasawat
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Event sequence analysis is an important task in many domains: medical researchers study the
patterns of transfers within the hospital for quality control; transportation experts study accident
response logs to identify best practices. In most cases they deal with more than thousands of
records. While previous research has focused on searching and browsing, overview tasks are
often overlooked. We introduce a novel interactive visual overview of event sequences
called LifeFlow. LifeFlow scales to any number of records, summarizes all possible sequences,
and highlights the temporal spacing of the events within sequences.

Please visit http://www.cs.umd.edu/hcil/lifeflow for more details
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Sequences In Proceedings of the 2011 Annual Conference on Human Factors in Computing
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We propose a demo of Semantic MEDLINE using an investigation of recent literature on clock genes to

demonstrate the tool’s ability to summarize recent literature. Clock genes were discovered in fruit flies

in 1971 and were later found in all other organisms, including humans. Recent research has gone
beyond molecular mechanics into the physiological implications of inappropriate expression and/or

function of clock genes in common diseases with significant clinical implications. We will do a search for

“clock genes,” using the most recent 1000 citations and then summarize the results using the

Pharmacogenomics schema to produce a graph of related predications. Then we will navigate through

the graph, highlighting significant predications and the underlying articles that provided them. This
tutorial will introduce the audience to Semantic MEDLINE’s general capabilities, the advantages of its
visual representation of search results, and some opportunities for tool development.
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InBox: In-situ Multiple-Selection and Multiple-View Exploration of
Diffusion Tensor MRI Visualization

Jian Chen *  Haipeng Cai

University of Southern Mississippi

Alexander P. Auchus
University of Mississippi Medical Center

Figure 1: The InBox multiple coordinated view interface: the user can use in-situ box(es) and sphere(s) to select regular or angular shaped brain
regions. Here selected fibers are within the white-colored boxes and spheres. Two removal boxes are colored in blue. Here, the corpus callosum
(a wide, flat bundle of neural fibers connecting the left and right hemispheres) is selected by operating the widgets from one view to select fibers
in dual views. The datasets are from a normal brain sampled at different seeding resolutions. The two streamtube models of human brains are
from a normal brain model in voxel resolutions of 0.94mm x 0.94mm x 4.52mm (left) and 1.72mm x 1.72mm x 3.00mm (right) accordingly.

ABSTRACT

We will demonstrate InBox, an in-situ multiple-selection and
multiple-view interface for interactive exploration of dense tube-
based diffusion tensor magnetic resonance imaging (DTI) visual-
ization. DTI is an in vivo non-invasive technique that measures
the directional dependence of the motion of water molecules in tis-
sues in three-dimensions (3D). Fiber tracking or tractography is a
standard approach to visualize the results of DTI. The tractography
produces a set of integral curves or fibers that follow the principle
direction of diffusion. If fibers are constructed and visualized indi-
vidually through a large volume of DTI, the display gets cluttered
making it difficult to get insight in the data. Thus, efficient interac-
tion is often demanded.

A high-level contribution of InBox is the design considerations
for the tight integration of selection with widget-based interface.
Built on existing techniques and suggestions provided by our DTI
collaborators, our work focuses on the use of conventional desktop
setting and helps users stay in the flow of focused attention. This
work builds on the assumption that focusing on the current work-
ing window can facilitate more precise selection by engaging the
users in their tasks. We call our interface InBox to stand for in-situ
selection.

Figure 1 shows a scenario of use of InBox, where the primary
interface is box- and sphere-based for selecting regular and angular
shapes. The box-based design was inspired by existing selection
approaches in BrainApp [2] and CINCH [1]. The sphere-widget

*Contact: jian.chen@usm.edu

was added to select regions that include curved fibers to exclude
unwanted ones that would have been chosen with a box. Box and
sphere widgets are as freely added and deleted as needed.

A unique property was to provide interactive side-by-side views
of the data across different scales that are designed to be less de-
manding on visual attention by enabling in place actions. It lever-
ages the use of screen space for splitting actions. Multiple boxes or
spheres can function together using two working modes (selection
and removal) and two associative logics (AND and OR) to support a
rich set of operations. Views are coordinated to facilitate tasks such
as comparing a patient’s DTI captured at different time instances.
For example, our collaborators were interested in comparing the
brain development of two cases (one normal and one agenesis of
corpus callosum or ACC). What the doctor who used InBox did
was to put the two datasets side by side, cull out those peripheral
fiber bundles using the selection boxes, and then fully engage in the
fiber bundles around CC. They did confirm their hypothesis using
our visualization with the InBox interface. Such an interface can
also be useful for educational purposes for showing cases to the
medical school students.
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