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Preface: 
As medical organizations move to electronic medical records and embrace new health 

information technology (HIT), the amount of data available to clinicians continues to 

grow at a rate not seen before.  The vast amount of observational data we now collect 

promises many benefits.  However, there are also many challenges.  The large amount of 

clinical data captured just for a single patient poses a challenging task for clinicians 

trying to make sense of the patient’s condition and understand the patient’s medical 

history. Similar challenges of scale and complexity are faced by those performing 

population studies over large collections of historical electronic health data.  

 

Visualization and visual analytics show great potential as methods to analyze, filter, and 

illustrate this vast sea of electronic medical data.  By tapping into the human ability to 

visually perceive and interact with data, these technologies promise to help unlock the 

hidden insights buried within the large and heterogeneous data sources we are collecting.  

These insights can help with diagnosis and decision support for physicians.  They can 

help patients and caregivers manage their health.  They can help generate and confirm 

hypotheses for researchers, and they can help institutions improve efficiency, 

performance, and outcomes.   

 

Visualization and visual analytics can potentially provide great benefits to each of these 

constituencies. However, to be successful, visualizations must be carefully designed to 

meet the challenges of the healthcare domain. This event, the fifth annual VAHC 

Workshop, provides clinicians, medical informaticists, and visualization researchers with 

a venue to gather, share ideas and results, and discuss directions for future work. 
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Interactive Analysis of Multiple Longitudinal Records of Diabetes Patients 

1Denis Klimov, MSc, 1Alexander Shknevsky, 2Robert Moskovitch, PhD, 1Yuval Shahar, MD, PhD,  
1Medical Informatics Research Center, Department of Information Systems Engineering,  

Ben Gurion University, Beer Sheva, Israel 
2Department of Biomedical Informatics, Columbia University, NYC, USA 

Abstract 

To support an interactive process of data analysis and discovery of new knowledge from large volumes of time-oriented 
clinical data, we had designed and implemented the Visual Temporal Analysis Laboratory (ViTA-Lab) framework. The ViTA-
Lab framework combines computational data-driven temporal data mining techniques, with interactive, query-driven visual 
analytical capabilities for investigation of the time-oriented data and of the discovered concepts and patterns. To demonstrate 
and assess our framework, we explored the data of 1700 diabetic patients, followed episodically over five years, focusing on 
the data associated with several medications for reducing the level of blood glucose and of its long-term measure, HbA1c 
(glycated hemoglobin). The exploration clearly shows that Metformin was associated with a significantly higher rate of 
decreased HbA1c (as well as with a shorter interval needed for achieving that decrease) than Glibenclamide. 

1. Introduction: Application of user-driven and data-driven analysis approaches in the medical domain 

The effective interpretation and analysis of time-oriented multivariate data, and in particular, of longitudinal clinical data, 
embodies within it a significant potential for the discovery of clinically significant medical knowledge, leading to an 
improvement in the quality of clinical care. 

Interactive visual exploration systems provide users with an overview of the data, enabling them to explore the visualized 
data to answer user-initiated queries. Thus, we refer to this data analysis manner as a query-driven (or user-initiated) approach. 
Although the interactive query-driven visual approach is user friendly and is highly focused on the analysis of concepts that 
have a relatively high promise for the discovery of new, meaningful knowledge, the method has a major inherent limitation: 
the user must know exactly what to look for, and which questions to ask. For example, if a query about a key association 
among three concepts has not been asked, a potentially important pattern might never be discovered. Thus, query-driven 
methods are quite precise, in the sense of producing mostly significant answers, but are incomplete. 

Previously, visual exploration systems in medical domains focused mostly on the visualization of raw longitudinal data for 
individual [1, 2] or multiple patient records [3, 4], as reviewed by Chittaro [5] and recently by Rind et al [6]. The seminal 
review by Aigner et al. [7] shows that visual analysis is usually studied within the information visualization area with a focus 
more on the visualization and exploration capabilities of the reviewed methods, and less on the pure analysis of the patients 
with a focus towards the discovery of new knowledge. As part of the shift in emphasis from looking at time-oriented data to 
understanding these data, recent visual exploration systems in general, and in the medical domain in particular, include 
capabilities for sophisticated interactive exploration of multiple-patients data set [8,9], a shift that is manifested also in recent 
Visual Analytics in Healthcare (VAHC) workshops [10-12]. However, these studies support only the analysis of raw data, 
and do not focus on the necessary underlying knowledge required for a more sophisticated analysis. 

At the other end of the analytical spectrum, one finds the pure computational data mining (DM) methods (in particular, 
temporal data mining (TDM) methods), i.e., the data-driven approaches. These methods are automated, computationally valid, 
and complete (i.e., discover all patterns in the data); but most of them are not interactive, are intended only for a “super-user” 
with significant experience, and do not allow an effective exploration of the (typically too numerous) computed output, much 
of which is irrelevant. As result, the small number of significant results might be missed. Thus, data-driven methods are 
complete, but their precision is low, in the sense that most of the discovered patterns are of low significance. 

A recent group of algorithms attempts to enumerate automatically, in a data-driven fashion, all frequent (i.e., above a given 
threshold of support) temporal patterns, given a set of symbolic time intervals based on temporal abstraction (TA) methods 
[13, 14]. These patterns are referred to as Time-Interval Related Patterns (TIRPs). A comprehensive description of the 
development of time intervals mining is in [15], including a detailed description of the recent KarmaLego framework, which 
has been demonstrated as significantly faster than previous TIRP-discovery approaches, due to its efficient data structures 
and its exploitation of the transitivity properties of temporal relations [15,16]. 

Therefore, we had designed and implemented a framework that combines both types of application, i.e., query-driven and 
data driven. We call our overall framework, which integrates several different computational models, and visual tools, the 
Visual Temporal Analysis Laboratory (ViTA-Lab). Recently, such a combination of visual and analytical capabilities of data 
analysis has been referred as visual analytics [17]. Thus, one might refer to the ViTA-Lab framework as a type of a visual 
analytics system. 
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2. The key principles of the ViTA-Lab framework 

x To significantly enhance the capabilities of a visual analytics system, we propose to first preprocess the input raw, time-
stamped data to produce a set of clinically meaningful summarizations and interpretations, typically interval-based, 
known as temporal abstractions (TAs) (or abstract concepts). In our framework, we use the knowledge-based temporal-
abstraction (KBTA) method [18]. Using a domain-specific temporal-abstraction knowledge base acquired from a clinical 
domain expert, this method derives context-sensitive temporal abstractions from raw time-stamped data;  for example, 
given a series of time-stamped hematological concepts, such as white blood-cell counts, and a series of time-stamped raw 
liver-enzyme values, the pattern, “a period of more than two months of grade II or higher bone-marrow toxicity, followed 
within three months by a period of at least one month of decreasing liver-functions" might be derived. (In this case, the 
medical concepts (terms) such as “grade II of bone-marrow toxicity” and “decreasing liver-functions” are defined within 
a particular clinical context; for example, a particular oncology protocol). 

x The temporal data can be analyzed in parallel either by using the data-driven (data–mining) computational methods, 
which automatically discover frequent temporal patterns, or by using the  interactive visual exploration interface to 
explore the data (both raw data and TAs) of multiple patients, and to understand the inter-relationships among concepts 
over time. 

x The ViTA-Lab framework includes several visual interfaces: 

1) The main visualization and exploration interface provides an interactive overview of the raw longitudinal concepts 
and of the distribution of the derived temporal abstractions for multiple patients, at any temporal granularity. This 
interface is based on the VISITORS framework [19]. The VISITORS system enables the user to display on the fly 
multiple TAs for a patient population and interactively explore their distributions over time, zooming in and out of the 
timeline at multiple temporal granularities. When the user selects a raw or abstracted (derived) concept in the knowledge 
browser, the concept is displayed in a panel on the right. 

2) The Temporal Association Chart (shown below in section 3) enables the user to visually display probabilistic 
temporal associations among the distributions of multiple different concepts at different times. This interface is based on 
the parallel coordinates paradigm [20] to show relationship between attributes, i.e., concepts. The full description of the 
temporal association chart functionality and analysis capabilities can be found elsewhere [21]. 

3) The Patterns Explorer (also shown below in section 3) is a dedicated interface for data-driven mining of frequent 
patterns in the data and for their exploration. Its underlying semantics are based on a version of the KarmaLego algorithm 
for the discovery of frequent temporal patterns [15]. 

 
3. A Proof of Concept in the Diabetic-Patients Domain 

To demonstrate the potential benefits of the new framework, we introduce below a real scenario demonstrating the discovery 
of new patterns and the analysis of time-oriented data. The scenario explores the data of a group of 1711 diabetes patients 
who had been followed for at least five years. Our focus will be on determination of the best medication for achieving the 
important objective of reducing the HbA1c (glycated hemoglobin) measure (the main monitoring method for diabetic patients, 
which represents the mean blood-glucose level of the patient over the past three months). The medications to be investigated 
will be two popular oral anti-diabetic agents: Metformin (a drug from the biguanid class, which reduces blood glucose through 
the suppression of glucose production by the liver); and Glibenclamide (a drug from the sulfonylurea class, which causes the 
pancreas to secrete more insulin). Metformin and Glibenclamide are the only two oral anti-diabetics in the World Health 
Organization Model List of Essential Medicines.  

To create a small knowledge base, the HbA1c levels (grade_1 up to grade_4) were specified by the medical domain expert, 
as represented in Table 1. Since there are no agreed symbolic ranges with respect to the drug doses (daily), the levels of the 
medications were computed by the Equal-Frequency discretization method from the data of all patients (see Table 2). 

 

Table 1. The predefined symbolic HBA1C levels 

HbA1c_State Levels HbA1c values 
grade_1 <7 
grade_2 7-9 
grade_3 9-10.5 
grade_4 >10.5 

 

Table 2. The predefined symbolic medication levels 

Metformin_ 
State Levels 

Metformin 
values (mg) 

Glibenclamide_ 
State Levels 

Glibenclamide 
values (mg) 

grade_1 <850 grade_1 <15 
grade_2 850-1700 grade_2 15-30 
grade_3 >1700 grade_3 >30 
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4.1. A First Overview of the Patients’ Data 

Figure 1 presents an overview of the HbA1C distribution over time, using a Temporal Association Chart (TAC), a very 
particular type of an exploration operator (a complete description of the computational methods underlying TACs and their 
formal semantics appears elsewhere [20]), of the HbA1c_State abstract concept across the first five years of therapy for a 
group of close to 1700 patients (1300 patients annually, on average; not all patients have data values in all time windows). 
(Note that the patient data are aligned not by their absolute date, but according to the start of treatment, i.e., a relative time 
line operator is applied, using as a reference point for time zero the start of therapy for each patient.) 

The distribution of HbA1c levels (the color legend of values is denoted by "2"), i.e., the relative proportion of patients who 
have each HbA1c state in each year of follow up, is represented within the specific time interval (denoted by "3") according 
to an annual (1 year) granularity view (as represented in panel denoted by "1"). Thus, for example, the annual HbA1c state 
for 33.79% of the patients in the first year of follow up was summarized (using a delegation function) as “grade_2” (see the 
tooltip denoted by "4"). 

The red links between two values of different adjacent distributions represent a group of patients who had both of the values, 
and thus an association over time between these values: The deeper the shade of the link's color, the higher the level of 
confidence in the relationship. That is, a darker shade of red indicates a higher confidence level in the future (right) value, 
given the current (left) value. The width of the link corresponds to the level of support, i.e., number of subjects having this 
particular value combination for these two time windows; broader links represent an association with higher support. By 
hovering with the mouse over an edge, the user will see additional statistical information, such as the lift and the statistical 
proportional test (see yellow tooltip denoted by "5"). In this case, the tooltip represents the relation between the “grade_1” 
values of the HbA1c_State during the third and the fourth year of treatment: 27% of the patients in the relevant patient group 
had this particular combination of values (i.e., support = 0.27), and 68% of the patients with “grade_1” HbA1c_State values 
during the third year also had “grade_1” HbA1c_State values during the fourth year (i.e. confidence = 0.68). This temporal 
association was valid for 461 patients, with a lift of 1.34. A proportion test that compares the confidence of the association 
(68%) to the prior probability of the HbA1c_State having the value grade_1 in the fourth year (51%), using the actual patient 
numbers, was significant with p<0.05 ("True"). Thus, this is a significant, non-random temporal association. 

Three main “clusters” or “pathways” could be visually identified in Figure 1: 

1) The main cluster of patients with the “grade_1” value of HBA1C_State (denoted by "6"), i.e., although in the case of nearly 
100 patients the HbA1c levels changed from year to year, most of the patients each year are balanced (with respect to the 
results of their therapy), with low values of HbA1c. Support values across the 5 years range approximately around 26% to 
27%, with confidence of 65% to 74%. In other words, a third of the investigated patients are stable and managed well, with 
respect to HbA1c values. 

2) Similarly, we identify the group of nearly 300 patients with a “grade_2” value of HbA1c_State over the five years (denoted 
by "7"). (These are not necessarily the same patients every year, but a clear mass across the temporal pathway can be 
observed). 

3) Finally, we note a segment of the patient population who are not balanced, having one of the higher HbA1c_State values 
(denoted by "8"); here the support and confidence of the relationship between the values change over the years. 

In this scenario, we would like to focus only on patients who are at the greatest level of risk for developing complications of 
diabetes: those who have had the “grade_4” value of HbA1c_State during the first year of the treatment (the rest of patients 
have been filtered out), as displayed in Figure 2. 

4.2. A Detailed View of the Patients who have had High HbA1c Levels 

Figure 2 shows interrelations between the HbA1c_State values from the second and following years for patients who have 
had a “grade_4” value for that state abstraction during the first year. As we can see from screen shots, the behavior over time 
of the patients actually varies quite a bit. The initial group of 142 patients has different pathways: the state of HbA1c for some 
of the patients is improved (i.e., changed to a lower level, from “grade_1” to “grade_3”) while another group maintains the 
high-risk, “grade_4” value of the HbA1c_State. 

Of course, patients move among the groups, and the change might be mediated by external factors that are not shown in the 
TAC, such as different types of medications. Since visually it is very difficult to recognize certain patterns, the user will now 
apply the data-driven, computational TDM engine, with the goal being the discovery of temporal patterns that might 
characterize these two different groups of patients (i.e., those whose state was improved to a lower HbA1c level, and those 
whose state remained at the risky, high level). 
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Figure 1. A Temporal Association Chart, showing the interrelation amongst HbA1c levels across the first five years after start 
of therapy. In a TAC, subjects who have both of the values of two temporally adjacent distributions are connected by a line; 
broader lines represent greater support for that conjunction of values, while a deeper shade of the linking color (red, in this 
case) represents greater confidence (i.e., the probability of having the second [right] value given the first [left] one). For 
example, the lowest temporal path (denoted by "6") represents a cluster of patients who have had Grade-1 HbA1c values over 
all of the five years. Note that the timeline is a relative one, aligned such that time zero is the start of the therapy for each 
patient. See text for complete description. 

 
Figure 2. A Temporal Association Chart showing the interrelation of HbA1c across the first five years after start treatment, 
displayed only for patients who have had a “grade_4” value of HbA1c_State during the first year of therapy. 
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4.3. Temporal Patterns of Patients with High HbA1c Levels 

To clarify the HbA1c state of the patients that improved and to try and associate it with the various types of medication used 
(from a list of more than 10 medications that were used by this particular population), the user now applies the KarmaLego 
computational engine, requesting to discover only frequent patterns of various HbA1c_State values and any medications. 

Applying the data-driven TDM mode returns 439 different patterns that involved the HBA1C_State and medication-level 
state abstractions, given a minimal support level of 10% (i.e., at least 10% of the patients had to have at least one instance of 
that pattern). By using the filtering engine that we added to the TDM engine (denoted by the label "1" in Figure 3), we are 
focusing on temporal patterns that starting with a “grade_4” value of the HbA1c_State and include in the rest of the pattern 
any HbA1c_State values. Only two medications (Metformin and Glibenclamide) passed the 10% support threshold. Patterns 
in which Metformin and Glibenclamide treatments were involved are labeled as "2" (panels "a" to "d") and "3" (panels "e", 
"f"), correspondingly. 

For instance, panel "a" shows the temporal pattern in which a period of medication treatment by Metformin (the middle long 
interval) with a dose level of “grade_2,” followed the “grade_4” period of HbA1c_State (denoted as a short interval on the 
left). The long interval on the right represents the value “grade_3” of the HbA1c_State. By the temporal position and duration 
of intervals, the user can easily understand various temporal relations among the key concepts from which the patterns are 
derived (e.g., before, overlaps, meets). For convenience, the values legend appears on the left side in the panel. The “VS” 
symbol denotes the vertical support value of the pattern (i.e., portion of subjects in which it occurs at least once), e.g., 15% 
of patients have had pattern shown in panel "a". (A horizontal support level denotes the mean frequency of the pattern within 
each subject in which it was found at least once). 

The user is able also to examine the mean duration and mean time gap between pairs of intervals and the relevant temporal 
relation among them (as shown in panel "d").  

It is clear that there is a frequent pattern of using one of the two most common medications and reducing the HbA1c level.  

One could ask which medication is associated with a higher rate of improvement in the HbA1c_State values? 

In fact, when one examines all patterns, overall, throughout all therapy years, it turns out that the HbA1c state of 77 out of 
112 patients who had HbA1c_State of "grade_4" before the medication period, and had taken only Metformin, seemed to be 
improve to a lower level (as shown in panels "a" to "d"); the mean duration from the start of the medication interval to the 
start of the lower HbA1c_State value interval was 9 months. To obtain the information regarding the number of subjects in 
each pattern, and, especially, regarding the number of distinct (or common) subjects, given several selected patterns, we 
developed an additional form (not shown here). 

Conversely, throughout all years, 34 out of 86 patients who had HbA1c_State "grade_4" and who had taken only 
Glibenclamide (panels "e", "f") (although no frequent pattern that ended with a "grade_1" value was discovered in that group); 
the mean duration from the start of the medication interval to the start of the lower HbA1c_State value was 14 months. 34 
patients were treated by both medications. The difference, using a proportion test, among the improvement rates (with respect 
to HbA1c values only) of the two medications would usually be considered as quite significant (p = 0.04 <0.05). 

To sum up, as a result of the application of the TDM engine, and through further exploration of temporal patterns, we identified 
two general clearly distinct groups of patients: (1) those in whom the high first year HbA1c_State seems to be improved by 
medications (78 patients), and (2) those in whom the HbA1c_State seems to remain high (31 patients). (The other 33 patients 
of the original 142 were omitted from the analysis, due to missing data during other years, etc.) 

Furthermore, it seems that in this particular group of patients, Metformin was associated with a significantly higher rate of 
decreased HbA1c_State (as well as with a shorter interval of achieving that decrease) than Glibenclamide. 

Conclusions 

We have presented an advanced, iterative, visual analytical framework, integrating data-driven and user-driven analysis of 
time-oriented clinical data, and capitalizing on a knowledge-based temporal-abstraction preprocessing phase. The fast 
intuitions provided by such a framework can often be translated into a deeper analysis or further studies. 

Thus, we would suggest that the ViTA-Lab framework might potentially serve as a virtual laboratory for clinical investigations 
of large masses of longitudinal clinical databases. 
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Figure 3. Patterns for the improving (i.e., decreased HbA1c state values) group of patients 

References 
[1] Plaisant C., Mushlin R., Snyder A., Li J., Heller D. and Shneiderman B. (1998) LifeLines: Using visualization to enhance navigation 
and analysis of patient records. American Medical Informatic Association Annual Fall Symposium (1998), pp. 76-80, 
[2] Wang T., Plaisant C., Quinn A., Stanchak R., Shneiderman B. and Murphy S. Aligning temporal data by sentinel events: Discovering 
patterns in electronic health records. SIGCHI Conference on Human Factors in Computing Systems 2008. 
[3] Falkman G. Information visualisation in clinical Odontology: multidimensional analysis and interactive data exploration, Artificial 
Intelligence in Medicine, vol. 22(2), pp. 133-158, 2001. 
[4] Chittaro L., Combi C. and Trapasso G. Visual Data Mining of Clinical Databases: An Application to the Hemodialytic Treatment based 
on 3D Interactive Bar Charts. Proceedings of Visual Data Mining VDM’2002, Helsinki, Finland, 2002. 
[5] Chittaro L. Information visualization and its application to medicine. Art Intell Med 2001; 22(2):81-88. 
[6] Rind A, Wang T, Aigner W, Miksch S, Wongsuphasawat K, Plaisant C, Shneiderman B. Interactive Information Visualization for 
Exploring and Querying Electronic Health Records: A Systematic Review. Foundations and Trends in HCI, 5(3):207-298. 2013. 
[7] Aigner W., Miksch S., Müller W., Schumann H. and Tominski C. Visual Methods for Analyzing Time-Oriented Data. IEEE Transactions 
on Visualization and Computer Graphics 2008; 14(1): 47-60. 
[8] Wongsuphasawat K, Alexis Guerra Gómez J, Plaisant C, David Wang T, Taieb-Maimon M and Shneiderman B. LifeFlow: Visualizing 
an Overview of Event Sequences in Proceedings of the 2011 Annual CHI'11 Conference : 1747-1756.  
[9] Zhang .Z Ahmed F, Mittal A, Ramakrishnan IV, Zhao R, Viccellio A, Mueller K. AnamneVis: A Framework for the Visualization of 
Patient History and Medical Diagnostics Chains, " IEEE VisWeek Workshop”, 2011. 
[10] Zhang Z, Gotz D and Perer A. Interactive Visual Patient Cohort Analysis. VAHC-2012, J. Caban, D. Gotz (ed.). 2012.  
[11] Brodbeck D, Degen M and Walter A.Masterplan: A Different View on Electronic Health Records. Proceedings of the IEEE VisWeek 
Workshop on Visual Analytics in Healthcare – VAHC-2012, J. Caban, D. Gotz (ed.). 2012 
[12] Meyer T, Monroe M, Plaisant C, Lan R, Wongsuphasawat K, Coster T, Gold S, Millstein J and Shneiderman B. Visualizing Patterns 
of Drug Prescriptions with EventFlow: A Pilot Study of Asthma Medications in the Military Health System. VAHC 2013. 
[13] Moskovitch R, Shahar Y, Classification Driven Temporal Discretization of Multivariate Time Series, Data Mining and Knowledge 
Discovery, DOI: 10.1007/s10618-014-0380-z, 2014. 
[14] Höppner F. Time Series Abstraction Methods -- A Survey. In Proceedings GI Jahrestagung Informatik, Workshop on Knowl. Discovery 
in Databases, LNI, Dortmund, Germany, 777-786, 2002. 
[15] Moskovitch R. and Shahar Y. Fast Time Intervals Mining using the Transitivity of Temporal Relations. Knowledge and Information 
Systems. Springer-Verlag, 2013. doi:10.1007/s10115-013-0707-x 
[16] Moskovitch R. and Shahar Y. Classification of Multivariate Time Series via Temporal Abstraction and Time Intervals Mining, 
Knowledge and Information Systems, In Press, 2014. 
[17] Keim D., Mansmann F., Oelke D. and Ziegler H. Visual Analytics: Combining Automated Discovery with Interactive Visualizations.  
Discovery Science,pp. 2-14, 2008. 
[18] Shahar Y. A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1-2):79-133, 1997. 
[19] Klimov D., Shahar Y and Taieb-Maimon M. Intelligent visualization and exploration of time-oriented data of multiple patients. 
Artificial Intelligence in Medicine, 49(1):11-31. May 2010. 
[20] Inselberg A. Parallel Coordinates: Visual Multidimensional Geometry and its Applications. Springer, 2009. 
[21] Klimov D., Shahar Y. and Taieb-Maimon M. Intelligent interactive visual exploration of temporal associations among multiple time-
oriented patient records. Methods Inform Med 2009; 48(3):254–62. 

2014 Workshop on Visual Analytics in Healthcare



  

Temporal Visualization of Diabetes Mellitus via Hemoglobin A1c Levels 

Eugenia McPeek Hinz1, David Borland2, Hina Shah3, Vivian L. West3, W. Ed Hammond3 
1Duke Health Technology Solutions, Duke University; 2RENCI, The University of North 

Carolina at Chapel Hill; 
3Duke Center for Health Informatics, Duke University 

 

Abstract 

Diabetes mellitus is a chronic long-term disease requiring consistent medical treatment to achieve glucose control 
and prevent complications.  Time of diabetes diagnosis can be variable and delayed years beyond disease onset.   
The spectrum of glycemic trajectories for a general population over an entire diabetes disease course is not well 
defined.  Aligning disease course on death enables coherent data visualization. Our temporal visualization tool uses 
a parallel-sets inspired technique that illustrates the complicated and varied trajectories of hemoglobin A1c levels 
for a general diabetic population.  A consistent glucose normalization trend for the majority of patients is seen over 
the course of their disease, especially in the six months prior to death. This tool permits discovery of population-
level Hemoglobin A1c trends not otherwise evident without disease phase synchronization. These findings warrant 
further investigation and clinical correlation. Visualizations such as this could potentially be applied to other 
chronic diseases and spur further discoveries.  

Introduction 

Diabetes mellitus is a chronic disease that affects millions worldwide, resulting in numerous cardiovascular and 
renal complications, and subsequently is a major cause of death. Age of onset, duration of diabetes, and poor 
glycemic control are well-defined risk factors for the development of complications associated with increased 
mortality in persons with diabetes mellitus.1 To decrease the development of complications associated with diabetes, 
tightly controlled glucose is the standard of care.2 Notably some large prospective trials have found either worse 
outcomes or lack of benefit for some patients at high risk for complications under tight treatment control regimens.3,4 
Hemoglobin A1c (HbA1c), a marker of glucose control over the two to three months preceding the test, is a 
validated predictor of diabetes-related complications.2 Using HbA1c to understand trajectories and temporal patterns 
of glycemic control over an entire diabetes disease course could be an important factor in improving treatment and 
reducing overall complications. 

Data visualization techniques offer opportunities to explore large datasets and identify clinical patterns that might 
otherwise not be obvious. In this study we present a cohort of patients with diabetes (via ICD9 codes) from Duke 
University’s   data warehouse, visualizing their HbA1c levels over time, aligned by death, to explore trends of 
glycemic control. To the best of our knowledge, temporal visualization of glycemic control for a diabetic population 
standardized on death has not previously been presented. Our visualization groups HbA1c values into ordered 
categories of glycemic control (Normal, Borderline, Controlled, and Uncontrolled), utilizing a method based on 
parallel sets5 and Sankey diagrams6 to view temporal patterns in HbA1c values. We incorporate a number of 
features to facilitate interactive data exploration, such as viewing the progression of values either forwards or 
backwards in time, the ability to change the temporal sampling and range of the data being viewed, highlighting of 
multiple subpopulations, coloring based on the category along each path in the data or at the beginning/end of each 
path, and the incorporation of demographic data, such as gender. 

Related Work 

Analysis of diabetes indicators 
A reduction in HbA1c levels lowers the risk of diabetes-related complications and mortality, especially for patients 
earlier in their disease course.7 Counterintuitively, intensive treatment of glucose to reach near-normal levels for 
patients already experiencing diabetes-related complications has failed to lower all-cause mortality.3 While large 
cross-sectional studies of populations such as the National Health and Nutrition Examination Survey find a temporal 
trend toward improving glycemic control over time, less well-established is the temporal trajectory of glycemic 
control for diabetic patients in general.8 The only other work the authors are aware of looking specifically at 
glycemic control trajectories for a large diabetic cohort followed patients prospectively to the end point of death.9 
The study correlated initial glucose control to outcome of death, but did not report specifically on the population 
glucose trajectories. 
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Visualization methods 
Our visualization tool is based on parallel sets5 and Sankey diagrams.6 Parallel sets were originally developed for 
visualizing relationships in multivariate categorical data, whereas Sankey diagrams, introduced by M. H. P. R. 
Sankey, are typically used for describing the flow of quantities such as energy, material, or cost. The original 
parallel sets user interface enables user-defined classification definitions, statistical analysis information, and 
various sorting methods. Parallel sets combines the concepts of parallel coordinates10 and mosaic plots11, enabling 
an aggregation of data points within visualization elements, as opposed to showing each individual element, which 
is typical of parallel coordinates. Multiple systems aggregate data points for summary.5,12-14 For example, EventFlow 
enables the search and visualization of interval data, such as periods of medication treatment, to examine the order 
of sequences of events in the data.12 OutFlow facilitates analyses of temporal event data in the form of pathways 
with relevant statistics.14 All of these visualization tools look at event occurrences and their order, without placing 
these events on time axes. Our diabetes visualization uses the parallel sets paradigm, with each axis representing a 
temporal sample of HbA1c levels instead of a separate variable, similar to von Landesberger et al.13 Although our 
current dataset is relatively small (121 patients), we chose a parallel sets representation in part due to its ability to 
aggregate many data points. The visual complexity is bounded by the number of axes and categories per axis, not by 
the number of data points, making it suitable for the exploration of larger datasets in the future. This representation 
also easily incorporates additional non-temporal variables, such as demographic data. 

Methods 

Data extraction and preprocessing 
Data   from  Duke  University’s  data  warehouse  were  extracted  using  DEDUCE,  an  on-line query tool developed at 
Duke to assist researchers in human subjects research and departments seeking quality improvement data.15 
Beginning with over 4.4 million patients, we first queried by 23 IDC9 codes for diabetes mellitus, with and without 
complications. The query was further refined by querying on patient death indicator and laboratory tests for 
glycosylated hemoglobin (HbA1c), and finally by including only patients prescribed anti-hyperglycemics. This 
search returned data from 208 patients. From this cohort of 208, we eliminated four that did not have a year of death 
recorded, one whose date of death was documented but continued to have laboratory results recorded after that date, 
and 82 who did not have at least 10 years of HbA1c laboratory values. Our final cohort includes data from 121 
patients. 

We average HbA1c values, given as a percentage of total hemoglobin, over 6 month time intervals. In the case of 
missing HbA1c values within a 6 month period we first attempt to impute an HbA1c value from the average glucose 
(AG) values over that period of time, via the formula HbA1c = (AG + 46.7) / 28.7.16 If no glucose values exist in 
that time period, the previous HbA1c value (measured or imputed) is carried forward. HbA1c values are then 
classified into four categories based on the severity of diabetes: Normal < 5.7, Borderline [5.7, 6.5), Controlled [6.5, 
8), and  Uncontrolled  ≥  8. 

The sampled data is time-aligned by the death event for each patient. The visual representation of diabetes 
progression propagates backwards in time initially. Time is represented as number of years before death.  

Visualization 
Our visualization tool was developed using the D3 Javascript library.17 The aim of this visualization is to investigate 
temporal trajectories of HbA1c levels for a large cohort of diabetes patients over a number of years prior to death. 
Since parallel sets is effective for showing relations between categories using aggregated frequencies of paths 
through categories at each dimension, it is a reasonable choice for showing HbA1c summary trajectories. The 
visualization tool shows a total of five categories: four representing glycemic control, and one optional Missing 
category for patients with data greater than 10 years before death. . Each vertical axis is a time step. The user can 
choose the frequency of these time steps, with a minimum sampling frequency of six months. The user can also 
select the maximum number of years before death. 

The death event axis is placed at the right with all other time steps moving backwards in time to the left (Figure 1). 
Each vertical axis is split into the four HgA1c categories (Normal in green, Borderline in blue, Controlled in orange, 
and Uncontrolled in red), and a Missing category in grey prior to 10 years before death. The height of each axis 
category represents the proportion of the patients in that category at that point in time. Paths moving between axes 
recursively split moving backwards from death to show the trajectories of similar groups of patients. The 
visualization can show trends either starting at the death event i.e. going backwards in time (dividing  
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Figure 1. Diabetes progression overview visualizations. The top image colors paths by the current HbA1c at each 
time step, which is useful for emphasizing overall temporal trends. The bottom images colors paths by the HbA1c 
level at death, showing at each time step where each path will end. 

recursively right to left), or starting at the last year in the visualization, i.e. going forward in time (recursive division 
from left to right). Going backwards and coloring by death shows at any time point the relationships between 
patients in a given category and their categories at death, while going forward in time shows the relationship 
between patients in a given category and their categories at a user-defined earlier point in time (Figure 2). Following 
Shneiderman’s  Mantra18 of first overviewing and then filtering, the user can highlight one or more groups of patients 
by clicking on categories or trajectories to highlight the behavior of that group of patients going backward and 
forward in time, reducing visual clutter (Figure 2). A tooltip also shows the actual number of patients in each group 
and their percentage of the total population. 

 
Figure 2. A 10-year range of data, sampled every two years, with forward propagation to show how the trajectories of 
patients change moving forward in time (left). Highlighting enables a focused view of a single category, reducing 
visual clutter (right). 

2014 Workshop on Visual Analytics in Healthcare2014 Workshop on Visual Analytics in Healthcare2014 Workshop on Visual Analytics in Healthcare



  

The user can also chose between different types of coloring schemes for the paths: 1) color by the category at the 
first or last year (depending on the propagation direction), which shows the level of variation for a category over the 
length of the visualization, 2) color by transition, where the transition has a gradient from the source to target 
category color, which is useful for showing overall trends, and 3) color by reverse transition, where the transition 
path has a gradient from the target category to the source category, which is useful for category-level analysis of the 
distribution of source and target categories at a particular time  step’s  category  (Figure  3).  To reduce visual clutter 
there is also an option to look at only static transitions (i.e. no change in category between time steps), and to look at 
only variations (i.e. only changes in the categories). 

 
Figure 3. The user can observe separate groups by selecting individual trajectories. In addition to coloring by the 
starting category, paths can be colored by a gradient from source to target category (left), which redundantly encodes 
the category at each axis to emphasize overall trends, or by target to source category (right), which enables a rapid 
analysis of where paths are moving to/from at each category. The circled regions highlight this difference. On the 
right, it is immediately obvious what category this trajectory came from at death (Normal in green) and how this group 
is distributed at the previous time step.  

We also include the ability to incorporate demographic data, such as gender, as additional axes (Figure 4). This 
feature enables the comparison of trajectories for different subpopulations based on data other than just HbA1c 
levels.  

 
Figure 4. By adding a gender axis and selecting two groups we can compare the variability of males who were 
Uncontrolled at death (olive) to women who were Uncontrolled at death (purple). Men appear to have more variability 
over the 5-year period being visualized, as shown by the large number of transitions between different categories. 

Findings 

In the 10 years before death, there is a consolidating trend to improved glucose control across all diabetes control 
categories from uncontrolled to normal.  Overall diabetes control shifts from uncontrolled diabetes for 46% of the 
cohort to 25% at death utilizing HbA1c and imputed glucose values. A reciprocal increase in combined borderline 
and normal range glucose control goes from 25% at 10 years out to 57% at death (Table 1). The trend for better 
glucose control is most visible in the last six months before death. The overall final glycemic trajectory is also 
evident in the bottom image from Figure 1 where the control category at death is colored retrospectively.  Notably a 
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small minority of the uncontrolled sub-group remains poorly controlled over the entire disease course. By including 
category temporal transitions this visualization also illustrates the complexity of the underlying data, with many 
trajectories exhibiting a large degree of variation in HbA1c categorization over time.  

Table 1. Percent of patients by Diabetes control category over 10 years prior to death using HbA1c with imputed 
glucose results. 
 
Glycemic Control by HbA1c -10 years years to death -5 years years to death At Death 
Uncontrolled Diabetes 46 % 39 % 25 % 
Controlled Diabetes 32 % 39 % 19 % 
Borderline 5 % 11 % 12 % 
Normal  17 % 12 % 45 % 
 

Discussion 

The progression of diabetes with accumulating end organ complications is well recognized. There is a clinical 
presumption that diabetes-related complications are also associated with worsening glycemic control for patients 
with end stage diabetes mellitus.  Since most prospective cohort   studies   are   organized   by   a   patient’s   clinical 
presentation, treatment or demographics, they tend to be cross sectional studies of a population and include patients 
across a disease continuum.  By creating a cohort organized by a death criterion with 10 or more years of diabetes 
lab data, we have sub-selected a general but presumably more ill diabetic population. Phasing HbA1c values by 
death allows data coherence that translates into the visualization of glycemic trajectories that would be less evident 
in cross sectional studies of diabetic patients. Understanding the course of diabetes control is important to discerning 
differences in outcomes, treatments and identifying sub-phenotype populations.  

Death event as an organizing point for temporal data visualization permits a clear starting point to observe the 
course of medically treated diabetes. Cause of death is not defined, so further characterization of subpopulations 
visualized in the cohort, like the always uncontrolled diabetes subgroup, warrants further clinical investigation to see 
if they are representative of the cohort overall.  All patients in this cohort had data for at least 10 years, as such our 
population is specific for patients under some manner of regular medical care, and interpretation of the data with 
respect to populations with less regular medical care should be limited.  Using the imputed average glucose and 
average HbA1c values aligned on   the   cohort’s endpoint enables capture of all glycemic values, including those 
potentially before even the diagnosis of diabetes is made.   

We observed a trend to normalization of HbA1c in the last year of life. The reasons behind improved diabetes 
control near the end of life could include multiple factors, such as increased insulin half-life due to impaired renal 
and hepatic metabolism, decreased dietary intake related to anorexia or nausea, and falsely low HbA1c secondary to 
uremia or anemia.19 Interestingly, the goals for end-of-life treatment in diabetic patients are generally to limit side 
effects of either hyper or hypoglycemia and often entail a scaling back of treatment which would be expected to be 
associated with more hyperglycemia not less. By using visualization tools to see the progression of HbA1c values in 
diabetic patients in the years before their death, our findings of glucose normalization in light of this paradigm 
highlight the need for further clinical investigation and interpretation.  
 
Our data visualization tool displays temporal patterns of diabetes metric across a population and for the last years of 
this disease continuum.  Tools such as these can only display patterns that can potentially illuminate findings that 
need further clinical validation and statistical investigation to determine clinical significance if any.   
 
Future work 
 
The visualizations we have shown here represent a small number of patients in the dataset. This has enabled us to 
test and refine the visualization before using large amounts of data. Next we will include diabetes-related co-
morbidities, e.g. cardiovascular, neurological, and renal manifestations of prolonged diabetes illness, and additional 
demographic variables, e.g. age and ethnicity. We plan to link this temporal visualization to other multivariate 
visualizations highlighting selected groups of patients, helping to show factors related to diabetes. We are also 
working toward a better statistical analysis of the data, and its representation in this tool. In particular, we wish to 
incorporate information regarding the amount of imputed and extrapolated data in the visualization. 
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Conclusion 

Exploring the natural disease course of diabetes control with data visualization tools permits identification of 
potentially clinically important trends that would be difficult to recognize otherwise. Further investigation and 
definition on the clinical significance of the normalization of HbA1c in the final years of life are warranted.   
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Abstract 

Complete Electronic Health Record (EHR) information was defined for 4307 patients undergoing 
gastrointestinal surgery at a Norwegian university hospital. Outcome was readmission within 30 days of 
the index episode. All structured codes were extracted along with variables extracted from other parts of 
the EHR, including from free text, and included in an interactive visualization. The visualization provided 
clinicians with an interactive way to explore the data. We were able to identify a set of clinically important 
variables that strongly correlated positively or negatively with readmission. The variable most strongly 
associated with readmission was whether the length of the index stay was longer than 5 days. The patterns 
that were identified largely corresponded to clinical and published knowledge regarding hospital 
readmissions. Inclusion of multiple factors in the visualization permits confirmation of expected causes of 
readmission, and exploration of new and unknown patterns. The visualization tool gave a way to identify 
patterns relating to a clinically important outcome, and provided an interactive and meaningful way for 
clinicians to engage with their data. 

Introduction 

The Electronic Health Records of modern hospitals amass large amounts of data as part of routine care, and 
the use of such data for quality control and improvement of care should be a central tenet for all institutions 
where such data are available.1 Due to the large amounts and veracity of the data, it is often cumbersome 
and complicated to manage, organize and test clinical hypotheses. However, modern analytics and 
visualization techniques provide novel ways in which users can analyze, categorize and organize such data 
enabling them to explore new hypotheses based on their datasets.2 

Surgery is a clinical setting where the utility of visualization techniques on large datasets has been largely 
unexplored. Furthermore, critical complications and severe outcomes for patients are relatively common, 
and a large number of variables can impact given outcomes. Visual analytics of care pathways and patterns 
in patient characteristics is a way for clinicians and other healthcare providers can learn which surgical 
approaches lead to better or worse patient outcomes. 

In the present paper, we focus on a clinically relevant problem: 30-day hospital readmissions as an example 
case study where visualization can provide clinically meaningful information. The Centers for Medicare & 
Medicaid Services (CMS) recently began using readmission rates as a quality metric and may lower 
reimbursement to US hospitals with excess risk-standardized readmission rates. This decision has lead to a 
huge interest on trying to identify patient factors associated with readmissions.3,4 In particular, the research 
on readmissions within the surgical field has focused on identifying risk factors associated with preventable 
readmissions. Several risk factors have been identified, and it is shown that readmitted patients have 
distinct demographic and outcome variables. It is also shown that readmitted patients are older, have more 
comorbidities, longer operative times, and length of stay. Independent readmission predictors are higher 
American Society of Anesthesiologists score (ASA score), previous abdominal operation and intensive care 
unit stay.5–8 

Building personalized risk assessment models for these patients is an important task, but such models can 
only use what is actively inserted into them, potentially missing important information. By non-
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discriminately inserting all available data into the analytics, novel and possibly unsuspected patterns can be 
revealed visually and subsequently this information can be built into predictive models. However, these 
visualization methods are largely hypothesis generating and need validation by independent data.9 We 
sought to investigate whether we could identify similar risk factors in a large surgical dataset, using novel 
visual analytics techniques on EHR data. 

In the current manuscript we demonstrate a tool to visualize the information in an EHR to identify the most 
important variables associated with a clinically relevant question, i.e. variables associated with 30-day 
readmission in a surgical population. In particular we used information available at discharge after the 
index surgery, such that resulting models would provide clinicians with a risk model for readmission at the 
time of discharge. 

Materials and Methods 

In order to mine patient records for relevant events, we used Progressive Insights which is a visualization 
toll that supports analysts searching for common patterns of events among large patient populations, as 
described in a previous paper.10 Progressive Insights provides an integration of frequent sequence mining 
analytics with an exploratory visual interface with multiple coordinated views. We used Progressive 
Insights to identify the factors associated with 30-day readmission.  

The frequent sequence mining analytics in this system are based on the SPAM algorithm.11 The analytics 
are designed to identify the most frequent sequences occurring in a large patient population. Using 
Progressive Insights, users can specify the definition of frequent by controlling the minimum support 
threshold, which specifies the percentage of patients in which a pattern exists in to be considered frequent. 

The results of the analytics are visualized in several interactive visualizations, including two List Views, a 
Scatterplot View, and a Tree View, as shown in Figure 1.The List View, shown at the bottom of Figure 1, 
is used in Progressive Insights to display the list of patterns detected by the SPAM algorithm sorted by one 

 

Figure 1: Screenshot of Progressive Insights. Progressive Insights supports analysts searching for 
common patterns of events among large patient populations.  Progressive Insights provides an 
integration of frequent sequence mining analytics with an exploratory visual interface with multiple 
coordinated views, including two List Views (bottom), a Scatterplot View (center), and a Tree View 
(right). In the scatterplot, the horizontal axis is correlation, and the vertical axis is support. The 50 most 
frequent, correlated variables are plotted as orange circles. The presence of the other thousands of 
variables are plotted as a purple heatmap to reduce clutter, where the saturation of each cell corresponds 
to the number of variables in the region. 
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of several user-selected ranking measures, such as support and correlation. Alongside each pattern is a 
histogram, where the bar length is proportional to the magnitude of the ranking feature. If the selected 
ranking is an outcome measure, such as Pearson correlation or odds ratio, the histogram’s color indicates 
whether the pattern correlates with a positive (green) or negative (red) outcome. 

The Scatterplot View, shown in Figure 1, displays patterns using user-selected metrics as the axes, so 
analysts can compare how metrics relate to each other within the data set. By default, the horizontal axis is 
correlation, and the vertical axis is support.  Each pattern is plotted as an orange circle within the 2-
dimensional scatter plot, and the size of the circle can be mapped to a third, user-selected metric (support, 
by default). However, depending on the minimum support threshold chosen by the user, hundreds or 
thousands of patterns may be discovered by the underlying analytics.  In order to keep the scatterplot 
comprehensible, the system displays only the top n patterns as orange circles, ranked by user-selected 
metrics. Users can dynamically select various metrics and different values of n during their exploratory 
analysis.  For all patterns that are not in the top-n, they are encoded by a heatmap in the background of the 
scatterplot. Each cell in the heatmap is colored using a log-scale color mapping, which indicates that the 
more purple a cell is, the more patterns that exist in that region of the scatterplot. 

The Tree View, shown on the right of Figure 1, is designed to provide a hierarchical view for users to 
navigate the frequent patterns. The patterns are displayed in accordance with the tree hierarchy of prefix 
relationships inherent in the patterns.  Concretely, this means that patterns that begin with an event type will 
be displayed as a root node in the tree.  If users wish to explore patterns that begin with a certain event, 
users find that event in the tree and then expand it by clicking the ‘+’ button next to the event.  After 
expansion, users will see a list of events that frequently follow the selected event type.  Users can apply this 
navigation technique to iteratively drill down into the patterns that are interesting.  Like the List View, 
users can select different rankings to re-order the tree, and also feature a histogram representation of the 
selected ranking. 

Although Progressive Insights features three distinct views for exploration, all of the views are coordinated.  
When users select a pattern in a view, the same pattern is selected in every view.  This allows users to 
quickly leverage the distinct affordances of each view when relevant to their analysis. 

Data$source$

We extracted the complete data from the EHR of a University hospital (University Hospital of North 
Norway; UNN) for all patients in the Department of Gastrointestinal Surgery. These data were managed in 
a database called QUAKE (Quality Control of Medical Performance by Unstructured EMR Data), 
containing both structured data and free text. Structured data was primarily diagnosis codes (International 
Classification of Diseases 10th edition; ICD-10) or procedure codes (Nomesco Classification of Surgical 
procedures; NCSP).[16] 

A cohort of patients was selected, based on having an episode coded as a surgical event among those 
defined in Table 1. For all patients, their local ZIP codes were extracted from letters saved in the EHR, and 
the code closest in time to the time of surgery used. If the address was outside the region where UNN is the 

Table 1: Surgical procedures analyzed for 30-day readmission. The top 10 types of surgeries included 
in the study, and number of patients in each group. Altogether 34 types were included, not all shown. 

Type of surgery  Number of 
patients  

Appendectomy  595  
Open colon resections  566  
Laparatomy  562  
Laparoscopic cholecystectomy  446  
Laparoscopic appendectomy  365  
Open rectal procedures  347  
Stoma formation  323  
Laparoscopy  301  
Inguinal and femoral hernia repair (open)  236  
Open procedures small intestine  217  
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local hospital, the patients were excluded since readmission could happen to a different hospital. In total, 
4307 patients were included in the final cohort. For all patients an index surgery was defined as the first 
episode containing any of the predefined surgical procedures. The most common procedures are 
summarized in Table 1. The index stay was defined as the period between admission and discharge that 
contained the index surgery. Readmission was defined as a non-outpatient hospitalization within 30 days 
after index surgery. 

Variables 

Variables that were included in the visual analytics were; diagnosis codes for a patient prior to and 
including the index stay, procedure codes after 60 prior to the index stay, demographic variables age (coded 
as greater than 60 years, close the median age for the population) and sex (coded as female). Additionally, 
factors believed to be associated with higher or lower readmission rates. These clinically defined factors 
were length of stay for the index stay (coded binary as longer or shorter than 5 days), intensive care 
treatment, previous abdominal surgery, previous heart surgery, laparoscopic surgery, and second surgery 
after the index surgery during the index stay5. Since we did not have data for other departments at the 
hospital such as the intensive care unit, we searched for the Norwegian word “Intensiven” as a proxy for 
whether patients were admitted to intensive care. For all variables a time stamp was included. Where the 
time point is not well defined (e.g., sex) the time of index surgery was used. 

In Progressive Insights, all patterns were visualized and analyzed, including all that appeared in at least 1% 
of the cohort (minimum 43 patients). After visually assessing the result, interesting patterns were selected, 
for which the odds ratio (OR) and p-values were computed. Since we perform massive testing we correct 
for multiple testing by a Bonferroni correction, and an adjusted p-value computed. 

The correlation in the visualization is the Pearson’s correlation coefficient !. The statistic !! = !" is !! 
distributed with 1 degree of freedom, which allows estimation of the p-value for a particular pattern. 

Results  

A screenshot of the resulting visualization is shown in Figure 1. Interesting patterns that were identified 
along with the demographic and clinically defined variables are shown with their respective odds ratio and 
adjusted p-values in Table 2. 

Table 2: Risk factors of readmission identified by visual analytics. Selected codes correlated negatively 
or positively with readmission ordered by absolute magnitude of correlation. The codes shown are those 
clinically specified (in italics) and selected codes appearing in the visualization as strongly correlating 
to the outcome and denoted as interesting by the clinicians. Patterns in bold are those with positive 
correlation, i.e., which reduce the chance of readmission. 

Variable N (%) ! OR p 
Length of stay > 5 days 1847 (42.9) -.256 0.301 < .0001 
Malignant neoplasm of rectum 542 (6.9) -.224 0.259 < .0001 
Immediate resurgery 250 (5.8) -.180 0.231 < .0001 
Appendectomy 586 (13.6) .140 3.48 < .0001 
Operation time 3-5 hours 351 (8.15) -.124 0.405 < .0001 
Acute appendicitis,  293 (6.78) .115 4.95 < .0001 
Previous abdominal surgery 403 (9.36) -.114 0.451 < .0001 
Wound infection 197 (4.04) -.114 0.345 < .0001 
Laparoscopic procedure 1230 (28.6) .113 1.87 < .0001 
Proctoscopy 240 (5.2) -.112 0.382 < .0001 
Partial proctectomy with colorectal 
anastomosis 

136 (3.16) -.109 0.304 < .0001 

Age > 60 years 2110 (49) -.0957 0.345 < .0001 
Laparoscopic appendectomy 365 (8.47) .0943 2.70 < .0001 
Reoperation for deep infection  45 (1.04) -.0822 0.221 < .0001 
Female 2148 (49.9) .0418 1.21 0.12 
Intensive care 177 (4.11) -0.0332 0.700 0.65 
Previous heart surgery 26 (0.6) -.0168 0.636 1.0 
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There are a large number of points in the lower center of the diagram indicating codes or patterns that have 
low support and correlate little with the outcome. Patterns that rise up at the ends indicate clinically 
relevant variables connected to the outcome. In the interactive version, the user can click on any variable to 
obtain more information, or explore patterns of events happening together or in sequence. 

Discussion 

Progressive Insights provides an intuitive way to explore the patterns that correlate with an outcome in 
surgical practice by using data available in the EHR. By including as many factors as possible, the 
visualization allows both to confirm known patterns, and to explore new and unknown patterns. 
Importantly, this information is sometimes actionable in that unwanted outcomes can be reduced by 
changing routines based on institutional factors or by individual assessment of new patients based on 
uncovered risk factors. 

Note that in our summary, each variable is evaluated separately to reflect how the visualization computes 
correlation. Adjusting for this by using, e.g., a multivariate model some effects may disappear if some of 
the variables are highly correlated with each other. The visualization should provide an initial insight into 
which variables to consider and not a complete statistical model. Hypothesis generation through 
visualization provides a starting point for pursuing any new insights and confirming them in subsequent 
rigorous analyses. 

Surgery is a time intensive procedure where most information in the EHR arrives within a short time span, 
as contrasted to, e.g., chronic disease management that spans years or decades. This is a likely reason that 
most of the patterns uncovered in our visualization are simultaneous rather than sequential, which limits the 
utility of finding temporal patterns. Nevertheless, simultaneous patterns can convey useful information. By 
nature, concurrent patterns do not have a causal structure, and thus the sequence of events is not defined. In 
the current iteration of Progressive Insights, the resulting sequence is arbitrary, thus limiting the ability to 
distinguish concurrent events.  

Clinical relevance 

Identifying relationships between clinically relevant variables and clinical outcomes is important for 
clinicians and decision-makers. In our opinion, the use of novel visualization software tools may provide 
new insights in variables contributing to risk assessment models. The results showed that prolonged length 
of stay, stoma, high age, long operation time and second surgery was correlated with 30 days readmission 
(Table 2 and Figure 1). These variables are in accordance with numerous clinical surveys. Recently, Keller 
et al assessed factor associated with readmissions.5 Preoperatively, they found that patients who were older, 
had more comorbidities, previous abdominal operations, and undergoing emergent procedures were at 
higher risk for readmission. In addition, patients who had open procedure, longer operative times, ICU stay, 
and longer LOS are more likely to be readmitted. Interestingly, these risk factors for 30-day readmission 
are in accordance with the factors visually identified to be correlated with readmissions, indicating that 
visualization tools provides clinically relevant information when assessing large datasets.5,12,13 

There has been considerable debate regarding whether a hospital’s 30-day hospital readmission rate is 
indeed a valid quality metric reflective of the care delivered at an individual institution. Recently Kiran and 
Delaney questioned the 30 day readmission rate as a adequate quality metric in colorectal cancer surgery, 
arguing that readmission within 30 days of a patient who has attained standardized discharge criteria may 
not be a valid indicator of poor quality of care.8 In our analyses with Progressive Insights, we have assessed 
more than 2000 variables that might be associated with readmissions. In our opinion this provides a deeper 
insight in factors associated with 30-day readmissions after surgical procedures, and may have significant 
implications for both quality improvement initiatives and cost savings.14 Furthermore, visual analytics can 
be an effective way for hospital decision makers to identify risk factors related to a certain clinical 
outcome. 

Conclusion 

In this paper, we have used a novel visual analytics tool to assess variables and their association with a 
highly clinically relevant and complex question; what characterizes patients that are readmitted within 30 
days after a surgical procedure? The visualization provided a deeper insight in the most important factors 
associated 30-day readmission, and our results are in concordance with other surveys that uses traditional 
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statistical methods to identify these associations. The clinical problem is highly complex, with a wealth of 
risk factors impacting the outcome, and visual analytics provide an important additional component to 
perform in-depth analyses of this complex clinical question. This application’s ability to visualize the 
association between two or more risk factors association with a clinical outcome is promising. In our 
opinion, visual analytics as a technique to identify unknown associations may play an important role in 
exploring and analyzing complex medical problems, and is a useful tool for decision-makers seeking 
actionable and preventable associations with unwanted outcomes.  
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Abstract 

Hospitals collect a tremendous amount of information on patients, including basic metrics, vitals, and 
outcome scores.  This information is effectively useless if it cannot be used to identify trends in patient 
responses and outcomes based on condition and treatment trajectories, and thereby provide a way to 
improve treatment. Unfortunately, because the data is highly heterogeneous and frequently contains dense 
networks of dependencies between both the measured variables and unmeasured latent variables, this 
wealth of data is usually cherry-picked for only a handful of the overwhelmingly obvious features. This 
approach significantly impedes understanding what features are relevant to an individual in a Precision 
Medicine context.  One approach to improving this situation is to enable the simultaneous visualization of 
all marginal and joint distributions of the measurements as seen in the population, and enable projection of 
an individual's data into this statistical space, so that the optimal approach for that patient based on their 
individual fit to the population trends can be determined. We have developed a visual tool, StickWRLD, 
loosely based on the idea of categorical parallel coordinates, which can depict the full marginal, and 
pairwise, tertiary, or quaternary joint distributions of numerous heterogeneous measurements across a 
population.  Originally developed for understanding the effects of networks of mutations in specific 
proteins based on population data, here we have adapted the approach to visually analyzing a 57-variable 
NICU dataset detailing premature infants' responses to various forms of skin-to-skin (kangaroo) treatment. 
 
Introduction 
 
The information that hospitals collect on their patients typically consists of a vast number of qualitative and 
quantitative "vital signs" and test measurements as well as outcome scores.   The resulting data sets contain 
numerous variables and possibly conditional dependencies between variables.  While pure machine-
learning approaches can yield accurate predictors that suggest optimal treatment plans for an individual, 
these approaches are effectively "black boxes" that do not facilitate understanding of the prediction, or 
enable expert intuition regarding whether an individual's unique characteristics have been appropriately 
weighted in the decision making process.  Only through an interactive visual exploration of the statistical 
structure that an understanding of the patterns and relationships can be revealed1,2.   

While many attempts at interactively visualizing patient records (including Electronic Health Records, or 
EHRs) focus on the concise display of single-patient statistics aimed at the healthcare provider3,4, other 
systems are research-centric, allowing researchers to examine multi-patient data5.  By screening such multi-
patient datasets, researchers can discover which factors have an impact on outcome measures, leading to 
better, directed interventions – provided they are able to explore the complete dataspace of possible 
interactions.  With the large number of possible factors to consider, a means to rapidly screen the many 
possible variables is required so that further efforts can be focused on refining specifically how those 
variables can impact patient outcome. 
 
StickWRLD is a visual analytic tool originally designed for visually exploring functionally-required 
networks of residue dependencies derived from protein family sequence data (multiple sequence 
alignments), and how the properties of these relationships play out in individual proteins, differentially 
affecting how they respond to mutations6.  StickWRLD has also been used to explore networks of SNPs 
and gene expression levels in an eQTL dataset7.  Here we describe the application of StickWRLD to a new 
data type:  multi-patient clinical dataset for the purpose of understanding clinical variables that are similarly 
interdependent and affect outcome scores in a positive or negative fashion. 

Visualization Design 
 
StickWRLD is a dynamic visualization tool that allows users to “browse” through statistical features 
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(primarily marginal and joint distribution features, though other measures of relationship can be encoded) 
of the population and individuals in that population, graphically displaying "interesting" relationships 
between variables in an interactive 3D interface.  StickWRLD's default calculation assigns a magnitude of 
"interest" based on the difference between the expected joint distribution for variables, and the observed 
joint distribution (effectively the residual), though any calculation of relatedness can be injected into the 
visualization.  On top of these statistics, StickWRLD layers an interface in which the user can interactively 
explore the consequences of different combinations of thresholds and heuristics for reducing the quantity of 
interesting features displayed.  Through this interaction StickWRLD essentially becomes a hypothesis 
generator, enabling users to weed through thousands of possible patterns of correlations and graphically 
filter the signal from the noise, discovering patterns of interest in population data, based both on statistical 
properties as well as the domain expertise of the user, and to examine how an individual fits the population 
patterns. StickWRLD and the human brain’s pattern-recognition ability effectively become a visual 
analytical engine that can be used to develop specific hypotheses to test, or to identify specific strategies for 
individualized treatment. Because StickWRLD focuses attention on unexpected features of joint 
distributions, its visual approach readily highlights non-linear dependencies (for example, threshold effects 
that are often overlooked in traditional regression analyses. 
 
StickWRLD displays each variable in a dataset as a column, with columns arranged in a ring to form a 
cylinder.  This cylindrical representation allows StickWRLD to display correlations between any possible 
combinations of variables.  Within each column, the marginal distribution of values observed for that 
variable is displayed.  Each possible value is represented as a sphere, with the size of the sphere indicating 
the frequency of occurrence of that particular value within the dataset (e.g. over-represented values are seen 
as large spheres, whereas under-represented values are seen as small spheres).  Correlations between 
variables are displayed as a cylinder connecting the appropriate spheres, showing the user not only which 
variable is positively (solid line) or negatively (dashed line) influenced by which other variable(s), but also 
displaying which values or categories within each variable, specifically, are linked.  The strength of the 
relationship is indicated by the thickness of the line.  By varying statistical and magnitude thresholds, users 
can manually drive the display to visualize more – or less – significant relationships.  The entire interface is 
a user-directed 3D representation, allowing the user to zoom in and out as well as to rotate and pan the 
display to explore and home in on specific relationships. 

This representation is essentially an interactive 3D projection of traditional parallel coordinates 
visualization.  Parallel coordinates are frequently used to visualize dependencies within high dimensional 
data, since every point in the high-dimensional space can be unambiguously represented in the parallel 
coordinates plot by a distinct polyline.  While more traditionally used for continuous-value data, parallel 
coordinates have also been applied to categorical data8,9 such as the data presented here.  Traditional 
parallel coordinates representations however suffer from two distinct failings that make them difficult to 
meaningfully apply in an exploratory/analytics context such as Precision Medicine.  The first is that, 
barring axis duplication which invokes additional issues, traditional parallel coordinates methods enforce a 
mandatory sequential ordering on the data, and can only represent dependencies between a variable and its 
immediately preceding or following neighbors.  The second is that for a variable and its neighbors, the 
display is effectively static - all dependencies, regardless of interest, are always shown.  StickWRLD 
overcomes these limitations both through its interactive analytics paradigm, and through its layout10. 

By wrapping parallel coordinate axes into a cylinder, StickWRLD violates the conventional wisdom that 
good visualizations should constrain themselves to two dimensions (to avoid the subconscious perception 
that foreground objects are more relevant), and introduces issues where edges may be occluded dependent 
on the viewpoint.  We justify the use of 3D in two ways:  First, since StickWRLD is an interactive 
visualization, there is no privileged perspective to mislead the user, and second, by moving the parallel 
coordinates from a plane into a volume, StickWRLD allows for the simultaneous comparison of all 
possible relationships – reducing the time required to analyze the relationships to minutes, whereas a more 
traditional multiple-2D graph approach would take significantly longer10.  StickWRLD, and other 
extensions of parallel coordinates into a 3D space11-13, all take different approaches to solving the problem 
of edge occlusion.  StickWRLD’s solution is to display only edges that meet or exceed a user-defined 
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residual, or observed – expected threshold, which is by default set arbitrarily high.  This minimizes 
potentially occlusive “clutter” while drawing out the strongest dependencies for consideration. 

While this layout and approach is somewhat controversial in the Visualization world, and there are clear 
scaling issues that make it most appropriate for data sets of only up to several hundred variables 
(summarization, clustering and variable-hiding features not discussed here extend this range to several 
thousand variables), we have demonstrated that StickWRLD’s approach provides a uniquely powerful tool 
for developing otherwise unattainable statistical models of densely connected interacting feature networks 
in protein sequence data, an application domain that is strikingly similar to that proposed here10. 

There is significant ongoing discussion in the field of visual analytics pertaining to optimal methodologies 
for visualizing datasets with very large numbers of nodes, edges, and edge-crossings14-17.  We address this 
general problem in two ways:  StickWRLD’s interactive 3D cylindrical visualization allows the user to 
enter and navigate through the data space, while dynamically modifying the number of displayed edges by 
varying the p and residual thresholds.  This allows the user to examine the data space at any desired level, 
focusing in on relationships of interest as defined by either their statistical significance, or their significance 
as defined by the domain expertise of the user.  More importantly, however, StickWRLD takes the 
approach that, in some cases, the noise and clutter are in fact desirable – StickWRLD takes advantage of 
the human brain’s pattern-recognition ability to see patterns as they emerge during the user’s dynamic 
modification of the statistical model. 
 
Case Study 
 
Extremely premature infants are one of the highest risk categories for developmental impairment due to the 
adversity that comes from missing the third trimester in utero18. Much interest has been generated within 
the neonatology community for evaluating the developmental outcomes of such infants and understanding 
how these outcomes are affected by practices within the Neonatal Intensive Care Unit (NICU).  The 
challenge is how to investigate the effects of a multitude of variables that neonates encounter during their 
hospitalization.  To apply StickWRLD to this problem, NICU data for 38 separate measures (including 
standard measures such as gestational age, birth weight, gender, time spent on a ventilator (IPPV), days 
until mouth feeding supplants intubated feeding, etc.) was collected for 57 premature infants over a one-
year period.  For each measure, the values were binned appropriately, using multiple schemes when there 
was no single obvious categorical way of binning the data.  All bins were represented with alphabetic 
designations to facilitate entry into StickWRLD.  The complete datasets (original as well as binning 
variations) as well as the StickWRLD python scripts and manual, which contains instructions for preparing 
StickWRLD format datasets, are available for download from http://www.stickwrld.org/VAHC-2014/ 
 
Results 
 
Initial binning dataset 
 
The initial StickWRLD view of the dataset validated the approach, displaying several expected 
correlations.  In Figure 1A, the Length of Stay (LOS, right forefront) is strongly correlated with the number 
of days until full mouth feeding (PO DOL, left forefront).  This relationship is unsurprising, as premature 
infants are typically not discharged from the NICU until they can feed exclusively by mouth.  Figure 1B 
shows a different perspective, with the inter-correlation of the 6-month Bayley outcome test scores 
(cognitive, communication, and motor) in the foreground – an infant with an average (or above average) 
score in any of these categories tended to have an average (or above average) score in all categories. 
 
StickWRLD also displayed a clear linkage between the presence of intraventricular hemorrhage (IVH) and 
Grade 1 IVH.  This relationship demonstrates that caution must be taken when binning clinical data for 
visualization in StickWRLD – while the relationship is valid, it simply shows that the majority of IVH 
cases are Grade 1.  Rather than encoding a binary (yes/no) state for the presence or absence of a condition 
in one variable, and the degree of the condition in a second variable, one variable for the degree with 
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“none” as one possible value would reduce the complexity of the analysis, resulting in fewer “obvious but 
uninteresting” correlations such as the one between the presence of IVH and the severity. 
 

 
Figure 1.  StickWRLD view of the initial dataset.   
 
One of the values of a rapid dynamic visualization such as StickWRLD is the ability to browse the data 
looking for relationships of interest.  Not displayed are several relationships discovered when the thresholds 
for p and r were tuned to even lower levels – for example, at p=0.06 and r=0.06, a correlation was seen 
between low birth weight and low Bayley scores (which, while not amenable to NICU intervention nor 
statistically significant, suggests that at-risk mothers should be encouraged to take steps to ensure as high a 
birthweight as possible for their infants).  Another correlation seen at these settings linked treatment of 
PDA (but not the disease itself) to longer NICU stays.  This sort of unexpected discovery is only possible 
because of StickWRLD’s simultaneous computation and display of correlations between all possible nodes. 
 
Binning variation #2 
 
To see the impact different binning schemes can have on the visualization, we re-binned the dataset with 
fewer, broader bins for several of the non-outcome variables.  Visualization of the newly derived dataset 
revealed a new correlation – that of the onset of time of kangaroo care (KCONSET) to average Bayley 
scores.  Figure 2 shows a top-down view of the visualization (Fig 2 Panel A, with KCONSET at the bottom 
and Bayley Scores are at the top) as well as an orthogonal view (Fig 2 Panel B, with KCONSET in the 
foreground and Bayley scores in the background). StickWRLD shows a strong correlation between very 
early (0 to 5 days after admission) onset of Kangaroo Care and average (71-100) Bayley scores. 
 

 
Figure 2.  StickWRLD visualization of Binning Variation #2 
 
Figure 2 also reveals an additional “uninteresting/expected” correlation – total length of kangaroo care in 
days is correlated to the time of onset of kangaroo care.  While real, this is inherently obvious and does not 
suggest any relationship between kangaroo care and outcome measures.  This again supports the need for 
domain expertise in both binning of datasets as well as subsequent visual analysis. 
 
Binning variation #3 
 
To attempt to put more granularity into the correlation between kangaroo care onset and Bayley scores seen 
in Binning variation #2, a third binning variation was generated with Bayley scores broken into a larger 
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number of smaller bins.  When this variation dataset was visualized, the correlation between kangaroo care 
onset and Bayley scores vanished, indicating that the correlation was to the larger range of values rather 
than to a narrower range.  A new correlation was seen between 0-30 days on the ventilator, or IPPV (Figure 
3, background), and above-average (101-110) Bayley Communication scores (Fig 3, foreground). 
 

 
Figure 3.  StickWRLD visualization of Binning Variation #3 dataset. 
 
Using StickWRLD as an hypothesis engine, we can now generate a testable hypothesis from the discovered 
correlations.  From the original, unbinned data we were able to isolate an individual with a low number of 
kangaroo care days whose IPPV and Bayley Communication score were low (contrary to the correlation 
seen in Figure 3).  A caregiver in the NICU with access to this analysis might have been able intervene by 
increasing the number of kangaroo care days for this individual, testing whether this resulted in an increase 
in their Bayley Communications score.  While only possible as a thought experiment for this particular 
infant, who has long since left the NICU, it demonstrates how StickWRLD can be used to sift through a 
clinical dataset looking for correlations between possible interventions and outcome measures. 
 
Conclusions 
 
StickWRLD, originally designed to visualize residue coinheritance/correlation in bioinformatics sequence 
datasets, can be applied to clinical health data.  StickWRLD calculates the strength of correlation for all 
possible combinations of variables in a dataset and then displays those exceeding the user-defined threshold 
settings – and dynamically allows the user to change those thresholds, updating the display in real-time. 
Because clinical data tends to be comprised of continuous and/or quantitative variables, rather than the 
finite set of discrete values possible in bioinformatics sequence data, care must be taken when binning the 
data into StickWRLD format.  Both construction and subsequent analysis of a clinical dataset benefit from 
the application of domain expertise. 
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Abstract 

Understanding workflow in healthcare settings is important to the safety and timely care of patients. However, 
discovering patterns in complex workflow data, such as those associated with the emergency department, can be 
challenging. Task stacking, multitasking, interruptions, and task weaving can obscure trends in common workflow 
patterns, yet understanding these processes is critical to understanding workflow. In this paper, we describe 
WorkflowExplorer, a dense data visualization designed to help users explore and find common transition sequence 
patterns by identifying and highlighting common sequences that meet certain user requirements. We present the 
interactions and capabilities of the visualization as well as the underlying probabilitistic model. We briefly 
demonstrate WorkflowExplorer's utility at identifying common patterns in the workflow of emergency medicine 
physicians across five observations. 

1. Introduction 

Emergency medicine (EM) physicians deliver unscheduled, high acuity care to multiple patients simultaneously. 
They have little to no control over incoming workflow, volume, or acuity. Furthermore, they often make decisions 
with incomplete data. As a result, developing a comprehensive understanding of EM workflow is challenging, yet a 
deep understanding of workflow is critical to the safe, efficient, and effective delivery of care to the patients1,2. In 
this paper, we present WorkflowExplorer, a visualization tool we developed to identify common transition sequence 
patterns in EM physician workflow. We discuss the tool's development, interactions, and how it can be utilized to 
analyze EM physician workflow data.  

2. Background 

2.1 Workflow in the ED 

Understanding physician workflow, which includes the work tasks performed and the tools and technologies used to 
accomplish those tasks, is critical to improving safety, quality and efficiency. In complex settings like the 
emergency department (ED), workflows are particularly difficult to understand. ED clinicians manage multiple 
patients with rapidly changing conditions and must be ready to adapt to accommodate new patients that arrive 
unexpectedly3. Given the conditions of the ED, physicians are often forced to perform multiple tasks simultaneously 
and must strategically interleave tasks and handle interruptions to ensure that appropriate care is delivered in a 
timely fashion. The literature examining performance under conditions of multitasking and interruptions has 
demonstrated how error prone these processes can be4-6.  

Most studies examining ED workflow have focused on quantifying the types of tasks performed and the length of 
time spent on different tasks7-9. These first order descriptives provide a good and necessary high-level 
characterization of workflow. However, a deep understanding of the complexities and nuiances of work processes 
can be difficult to achieve from such descriptive data. For example, it is difficult to glean information on the specific 
temporal patterns of different tasks from aggregated descriptive data and it is unclear as to which tasks may be 
performed in parallel or serially. Advanced data visualization techniques have the potential to provide these more 
complex details in a format that is easy to interpret.   

2.2 Understanding Workflow through Visual Analytics 

Emergency medicine (EM) physician workflow is an example of complex multi-dimensional temporal data. 
Properly designed information visualization systems can greatly assist in the exploration and discovery of patterns 
and relationships10-12. Systems that leverage both the human’s ability to detect trends and the computer’s ability to 
rapidly process data can help users discover, test, and evaluate meaningful and significant patterns13. There have 
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been many systems and concepts developed to assist in the visualization and understanding of complex temporal 
data, such as LifeFlow, EventFlow, VizTree, ThemeRiver, and others14-18. While these visualizations offer novel and 
useful ways to explore temporal data, it is challenging to find an integrated tool that both captures the intricate 
relationships of multiple interweaving tasks and identifies common transition patterns for the user. Tools to help 
users discover temporal patterns and trends can be greatly enhanced by incorporating statistical and machine 
learning techniques.  

In this paper, we discuss WorkflowExplorer, a visualization developed utilizing a state transition probability model 
to automatically highlight common transition sequences based on user defined parameters. This visualization tool 
was developed based on challenges when exploring complex workflow data to identify meaningful patterns. There is 
a plethora of algorithms and approaches already developed for sequence pattern identification that can aid in this 
process, such as Hidden Markov Models (HMM), Symbolic Aggregate approXimation (SAX), Bowtie, prefix and 
suffix trees19-23. VizTree and PairFinder are examples of visualizations that incorporate more advanced algorithms or 
statistics to assist users in the overall exploration and discovery process16,24. In this paper, we expand on this work 
and developed a tool that makes the identification of common transition sequences in workflow data easier and more 
intuitive. We discuss how we incorporated conditional state transition probabilities into our visualization and how 
we developed an user interface to help facilitate the exploration and discovery of patterns and trends in EM 
physician workflow. 

3. Approach 

In this section, we discuss the data used, our state transition probability model, and the features and interactions of 
WorkflowExplorer, as seen in Figure 1.  

 
Figure 1: WorkFlowExplorer helps users explore and find common state transition sequences 

3.1 Workflow Data 

We tracked the workflow of emergency medicine (EM) physicians at various hospital sites using a tablet running a 
web application designed to collect emergency room workflow data25. We captured when participating physicians 
were 1) working on the computer [Computer], 2) reading or documenting something on paper [Paper], 3) directly 
taking care of a patient [Patient], 4) talking on the phone [Phone], 5) using another device [Device], 6) talking to a 
nurse [Nurse], 7) talking to a student [Student], 8) talking to an assistant or technician [Assist/Tech], 9) talking to 
another physician [Physician], 10) performing any other task [Other], or some combination of the above. Each 
unique combination of task(s) is considered a different state. For example, talking to a nurse, [Nurse], versus talking 
to a nurse while documenting information on a computer, [Nurse + Computer], are two different states. This allowed 
us to track when physicians switched tasks as well as when they were multitasking. This continuous data was 
discretized into ten second increments22. This provided some data smoothing and made categorizing multitasking 
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intervals easier. The example in Figure 2 illustrates the resulting data structure (right) after the discretizing and 
smoothing process. We used this discretized data to develop our state transition probability model and visualization. 

 
Figure 2: Continuous data (left) discretized into discrete states (right) 

3.2 Defining the State Transition Probabilistic Model 

The state transition probabilities associated with each unique state change lay the foundation for our visualization. 
We define the transition probability of being in a state, si (i=1, 2, 3,...N where N is the total number of states), as 
simply the conditional probability of arriving at the current state (si) given the previous state (sj) or: 

൯ݏ|ݏ൫ =  
(ݏ)൯ݏ|ݏ൫

൯ݏ൫
 

where p(si) and p(sj) are the transition probabilities of being in states si and sj, respectively, given all the other states. 
As an illustration, in Figure 2, the probability at time 10s would be the conditional probability the participating 
physician would switch to a [Computer + Paper] multitasking state after working on just the [Computer]. A 
transition probability was assigned for each time interval associated with a state change, excluding transitions to the 
starting state and time intervals that did not change from the previous state. 

3.3 Guided Discovery of Transition Subsequences 

Our visualization helps users explore and discover patterns in workflow data by highlighting and summarizing 
common transition sequences based on user defined threshold values, Figure 3. 

 
Figure 3: Common sequence patterns in this sample workflow data are highlighted in yellow  

Transition probability threshold 

WorkflowExplorer lets users adjust the state transition probability threshold (fp) based on their experience, interest, 
etc., Figure 4 (left). Setting this parameter at a low value, fp = 20 (or 0.2), will consider any transition probabilities 
greater than 20 (or 0.2) as important to the user. A low fp will tend to highlight more common transition sequence 
than higher fp values. 

 
Figure 4: User controls to adjust the state transition probability threshold (left) and the time window threshold 

(right) 

Time window threshold 

The time in which transitions occur, or time window of transitions, is another important measure to consider. 
Although a sequence of transitions could be common, such as [NURSE + PAPER] to [PAPER] to [PAPER + 
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COMPUTER], if the times between the transitions were long or greatly varied, the transition sequence might be less 
meaningful. Taking this into account, our visualization lets users adjust a time window threshold (ft) which defines 
the maximum distance between two important transitions, as defined by fp, required to consider the interval an 
interesting sequence. For example, two state transitions greater than fp 15 seconds apart, would not be highlighted as 
a common transition sequence if ft = 10s, but would be highlighted if ft = 20s. This interaction lets users explore how 
time intervals affect the identification of patterns. 

Identifying common transition sequence patterns 

WorkflowExplorer identifies and highlights common transition sequence patterns in workflow data that meets the 
parameter thresholds defined by the user. This is accomplished simply by identifying intervals, ft or less, that contain 
two state transitions of probabilities, fp or greater. However, if there are clusters of relevant state transitions, the 
resulting sequence pattern could be longer than ft. For example, in Figure 5, the number of unique patterns depends 
on the time window threshold, ft. If ft = 20s, two separate transition sequence patterns would be highlighted. 
However, if ft = 50s, only one longer transition sequence would be highlighted. As a result, the length and count of 
transition sequence patterns identified greatly depends on both the fp and ft thresholds.  

   
Figure 5: The length and count of identified patterns will depend on the time window threshold 

Furthermore, the common state transitions representative of the highlighted patterns are listed in the visualization. 
The summary table in the left panel of the visualization provides an overview of the top transitions given the user 
parameters, Figure 1. The common transitions are displayed as text to conserve space and make the trends more 
readable. This can help users both generate hypothesis as well as find and explore different trends and patterns.  

4. Interactive Exploration and Discovery of Patterns 

With WorkflowExplorer, users can easily and quickly identify workflow patterns and explore the sensitivity of these 
patterns by adjusting the transition probability and time window thresholds. The visualization examples in Figure 6 
show the highlighted EM physician workflow patterns using different parameter settings.  

   
Figure 6: Common transition sequence patterns results with different threshold parameters  

By setting fp to 15 and ft to 30s, Figure 6 (left), WorkflowExplorer identifies a number of patterns where the 
physician is switching between one and multiple tasks. This clearly highlights the highly dynamic nature of EM 
physician workflow. We also notice the prevalence of multitasking and task switching centered around the 
computer. As hospitals adopt electronic medical systems, it is expected that computers are going to be used more in 
the patient care process. To further investigate the more probable and longer transition sequences, we increase fp and 
ft, Figure 6 (right). Some initial insights we immediately observe are the differences between the five observation 
sessions. The fourth and fifth observation session have clearly different workflow patterns than the other three. It is, 
for example, interesting to observe that the common patterns in the fourth and fifth observations involved nurses 
much more than the other three. This visualization can quickly highlight common transition sequence patterns for 
users to explore and investigate further.  
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5. Initial Feedback and General Discussion 

We used our tool to visualize transition trends and patterns in emergency medicine (EM) physician workflow. We 
solicited initial feedback regarding WorkflowExplorer from various researchers interested in understanding temporal 
patterns in workflow data. Users commented on how the highlighted common transition sequence patterns provide 
an useful starting point for data exploration. Users enjoyed the simplistic threshold controllers and how the results 
were updated in real-time. We also received various feedback and suggestions that will greatly improve the 
interactions and visualization of the tool. These suggestions include additional user controlled parameters, such as 
the minimum number of transitions required for any given sequence. The current default system requires at least two 
transitions per pattern. In addition, it would be helpful to provide more descriptions of the common transition 
sequence patterns in the summary window. 

Furthermore, in WorkflowExplorer, the most probable state changes are transitions to and from multitasking states 
rather than from one task directly to another task. This initial insight highlights the rapid task weaving and 
multitasking nature of EM physician workflow. This visualization also lays the foundation for many additional 
unique interactions and analyses. It would be useful, for example, to visualize when external interruptions occur and 
highlight common workflow behaviors leading up to multitasking events. Understanding what leads up to 
multitasking events or how physicians respond to interruptions can have important implications on patient safety and 
patient care. 

6. Conclusion 

Understanding workflow is important to the evaluation and improvement of patient care and patient safety, 
particularly in complex highly dynamic environments, such as the emergency department (ED).  However, studying 
workflow patterns in the ED is very difficult because of the temporal and multitasking nature of the work. We built 
WorkflowExplorer to help users better understand emergency medicine (EM) physician workflow through a guided 
exploration of the data. Our visualization helps the user explore and identify workflow patterns base on the user's 
experience, domain knowledge, and thresholds. We demonstrated how this visualization could identify different 
workflow patterns based on a user's threshold settings. We provide initial user feedback of the visualization as well 
as suggestions for future improvements.  
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Abstract 

Medical institutions and researchers frequently collect longitudinal data by conducting a series of surveys 
over time. Such surveys generally collect a consistent and broad set of data elements from large sets of 
patients at predefined time points. In contrast to the sparse and irregular retrospective observational 
data found in electronic medical record (EMR) systems, prospectively gathered survey data captures the 
same variables at the same time steps across the full study population. Most analyses of this type of 
longitudinal data focus on understanding the how various properties of the patient cohort associate with 
specific variables or outcomes measures. However, this approach may miss interesting patterns within 
constellations of correlated variables. In this paper we describe a visual analysis method for survey data 
that considers interactions across the full, high-dimensional set of collected variables. Our approach first 
applies cluster analysis algorithms to survey data collected at each time point independently. We then 
visualize patient cluster dynamics over time, allowing investigators to identify common patient subgroups 
and evolution patterns, inspect derived statistical summaries, and compare findings between patient 
subgroups. We demonstrate our method using data from a survey that followed a cohort of approximately 
1,000 patients admitted to the emergency department (ED) following a motor vehicle accident. The 
survey includes data for each patient at four discrete time points, beginning at admission to the ED and 
continuing for one year. 

 
1. Introduction 
 
As health information technology becomes more pervasive, institutions are collecting an ever-growing 
amount of data about the patient experience. In addition to volumes of retrospective electronic health 
records (EHRs), a significant amount of information is also being gathered via prospective studies designed 
to collect a specific set of data over time from targeted populations. In contrast to the sparse and irregularly 
observed data found in EHRs, prospective surveys typically produce dense and consistent sets of data that 
capture the same data at the same time points for all participants. This provides a rich resource for those 
seeking to understand temporal, population-level trends in outcomes of interest. Most often, analyses of 
data from these study focus on understanding of how various properties of the patient cohort associate with 
specific variables or outcomes measures. While this approach can be highly informative, it may also miss 
interesting and harder-to-find patterns that are diffused across constellations of correlated variables. In 
addition, those interested in understanding the data have no ability to explore outcomes and relationships 
interactively. 
 
This paper describes an interactive visual analysis method designed to help discover and highlight such 
hard-to-find patterns. Our approach applies user-configurable cluster analysis algorithms to participant data 
independently at each time step. This produces a set of multiple cohort segmentations, one for each time 
period. We then visualize changes in patient cluster membership over time, capturing the aggregate 
dynamics of how participants evolve from time step to time-step including common patient subgroups and 
transitions. Interaction capabilities allow users to inspect derived statistical summaries for specific cohorts, 
and compare findings between patient subgroups. 
  
These methods draw on a rich history of work exploring temporal visualization of patient medical data as 
we describe in the Related Work section. Particularly relevant are flow-based diagrams that show, as our 
method does, aggregate cohort evolution patterns over time1–4. These techniques have shown that graphical 
visualizations of patient data arranged temporally (in timeline fashion) can provide a useful way for 
physicians to view the progression of sets of patients. However, these methods typically focus on 
visualizing low-level medical events such as individual diagnoses or medications. Unfortunately, medical 
data is of such high dimensionality that the number of variations is very large. Moreover, small variations 
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in time or sequence that may not be clinically significant can significantly alter the results. For these 
reasons, more general higher-level trends are often difficult to uncover. Our method, because it focuses on 
survey data that are from specific time points, takes a different approach. Rather than plotting specific 
medical events, our system identifies and visualizes clusters of similar but not identical patients. This 
allows high-level pattern identification and analysis that overcomes challenges of scale that occur due to 
small variations in underlying patient data.  
 
To validate our approach, we applied our method to patient survey data from a survey of approximately 
1,000 patients who were injured in a vehicular accident and required treatment at an emergency room. The 
survey captured a wide variety of data from these patients at four discrete time steps: arrival at the 
emergency department (ED), six weeks later (W6), six months later (M6), and one year later (Y1)5. 

We developed an interactive visualization prototype based on our methods and used it to (1) analyze the 
survey data to identify clusters of similar patients at each of the four time points, (2) visualize patient 
trajectory between clusters over time, and (3) support interactive exploration and comparison of descriptive 
statistics calculated for each dynamically computed patient cluster. The prototype supports a range of 
clustering algorithms and parameter controls, allowing for exploration of different types of patient 
groupings. 
 
2. Related Work 
 
Given the central role of time in many medical datasets, temporal visualization methods have been used in 
many different medical informatics contexts. For example, a number of systems have adopted visualization 
as a means to convey data for individual patients. For example, Plaisant et al. developed LifeLines6 which 
provides a timeline-based visualization environment for personal patient medical histories. Similarly, 
Powsner and Tufte developed a graphical summary of patient status using a table of individual plots of 
treatment data and test results7. As a final example, TimeLine by Bui et al.8 outlines another variation of 
vertically arranged timelines representing an individual patient’s data. 
 
Recognizing the importance of understanding population-level dynamics, a number of more recent research 
efforts have proposed visualization methods designed for depicting data for sets of patients. Fails et al. 
developed PatternFinder9, an interface that provides result-set visualizations to search for and discover 
temporal patterns within multivariate datasets which was applied to analyze patients with high blood sugar. 
Meanwhile, Wang et al.10 presented an interactive visual tool to visually align sets of individual patient 
timelines around sentinel events through which patients exhibiting specific event sequences could be found. 
 
While the examples above support the visual analysis of data from multiple patients, they achieve this 
through small multiples: repeated graphical elements that individually represent each patient. Large-scale 
cohorts—with hundreds, thousands, or even millions of patients—pose a difficult challenge for this 
approach. For that reason, scalable flow-based visualization techniques have been used to depict patient 
evolution in aggregate. Examples of this approach include LifeFlow3, Outflow2,11, and DecisionFlow4. 
These techniques all use individual medical events (e.g., a single diagnosis or medication event) to group 
patients into a single flow. In this paper, we propose an alternative method that displays clusters of 
statistically similar patients who might not share identical event sequences in their record.  
 
Our approach is certainly not the first to use statistical analysis to group patients and visualize the results. 
Patient stratification has long been used to prioritize patient populations or identify those most at risk12. 
However, previous methods have differed from those presented here in that they have not applied cluster 
analysis algorithms independently at different periods of time, have not visualized these changes in cluster 
membership, and/or have not allowed users to interactively explore the data by selecting characteristics 
upon which to cluster patients or specific subgroups to cluster.  
 
3. Visual Analysis Methods 
 
Our visual analysis method begins with raw study data as input and produces an interactive visualization of 
patient cohort evolution over time as output. This section describes the key steps in the process of 
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converting the input data to this final visual display. As shown in Figure 1, these steps include data 
normalization, variable selection, cluster algorithm configuration, cluster analysis, and visualization. 

 
Figure 1. Our method begins with raw survey data which is then normalized and prepared for cluster 
analysis. Users can optionally select a subset of survey variables (all variables are used by default) and 
cluster algorithm parameters to use for computing the clusters at each time step. The clusters are then 
visualized, allowing users to (a) explore changes in cluster membership across time steps and (b) compare 
summary statistics for each cluster. 
 
Data Normalization. Because the approach outlined in this paper is designed for prospective study data, it 
assumes that the input data is both dense (that all variables are populated for all patients) and temporally 
aligned (that measurements are captured for all patients at the same time points after alignment). In 
practice, however, some data cleaning is often required to omit (or impute) missing values and to clean up 
other data anomalies. In addition, a data normalization process is required to convert measurements 
captured using different scales into comparable measurements. This is an important pre-processing step and 
is necessary to obtain valid results from the cluster analysis algorithms.  
 
Variable Selection. By default, the proposed method clusters patients at each of the datasets time points 
using all available variables. However, it is often desirable to focus the clustering algorithm on specific 
subsets of the variable space. For example, an investigator may wish to omit demographic data from his/her 
analysis. A variable selection panel in the user interface supports this function by allowing users to check 
(or uncheck) certain variables dynamically over the course of an analysis. The checked variables are 
considered selected, and only the selected variables will be considered by the system when applying the 
clustering algorithm. By making this control interactive and part of the user interface, ad hoc exploration 
patterns are supported. Users can change the variable selection, quickly see the impact of this change on the 
visualization, and then follow up with additional changes to the selected set of variables. While the user can 
in theory select any of the available variables (several hundred in the dataset used here), the user interface 
in our prototype implementation provides a short list of clinically interesting variables selected by content 
experts. More specifically, we focus on nine variables including four demographic factors and five pain 
symptom measures. 
 
Cluster Algorithm Configuration. In addition to controlling the set of selected variables used in the 
cluster analysis, users can configure the clustering algorithm itself. This includes both a selection of the 
algorithm used and any associated input parameters required by the selected algorithm. Our prototype 
implementation supports four distinct clustering algorithms. Two methods, Ward’s Method for hierarchical 
clustering13 and K-Means clustering14, allow the user to specify the number of clusters to identify at each 
time point in the study data. The two other supported clustering methods take tuning parameters that 
indirectly control the degree of clustering as a function of the underlying data distributions: DBSCAN15 and 
Affinity Propagation16. By providing flexibility in configuring the algorithm and parameters used during 
clustering, our method allows users to explore the differences in patterns identify by the various algorithms.  
 
Cluster Analysis. The preceding three steps—data normalization, variable selection, and algorithm 
configuration—prepare the inputs required to perform the actual cluster analysis computations. Based on 
the specified algorithm configuration and the set of selected variables, the normalized participant data is 
processed to generate a multiple sets of cluster assignments. One set of clusters is independently computed 
for the entire patient population at each time point in the data.  
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Visualization. Once the clusters have been computed for each time step, the results are visualized for 
interpretation and visual analysis. Our visualization design is patterned after a Sankey diagram and shows 
both the computer clusters and patients’ changes in cluster memberships between time periods. More 
details of our visual design are described in the next section. 
 
4. Visual Design 
 
The visualization component of our system adopts a flow-based design that builds on traditional Sankey 
Diagrams. In our design, we represent the individual time points in the study data as a vertical line arranged 
horizontally across the screen. At each time point, blue rectangles are used to represent individual clusters 
of patients as computed by the methods described in the previous section. This design is reflected by the 
vertical blue rectangles in Figures 2 and 3. The height of each blue rectangle corresponds to the fraction of 
the overall population that belongs to the corresponding cluster. Larger clusters have taller blue rectangles. 
The cluster rectangles at one time point are connected those at neighboring time points via gray, curving 
edges. Each edge represents a set of patients that move from one cluster at a particular time to another 
cluster at the subsequent time step. As with the blue cluster rectangles, the height of each gray curing edge 
corresponds to the number of patients. 
 
Interaction plays a critical role in the user interface (UI) design. The visualization is placed in a central 
canvas areas surrounded by two sidebars. The leftmost sidebar contains the variable selection controls and 
the clustering algorithm configuration controls. These allow user feedback to flow back to earlier stages of 
the method as illustrated in Figure 1. Once making a set of modifications has been made, users can click on 
the “Update Visualization” button to trigger a new round of clustering computations based on the current 
settings in the user interface. As the computation completes, the visualization is updated to reflect the 
resulting change in patient cluster assignments. This change is reflected in the differences between Figures 
2 and 3. Both figures show a visualization of the same underlying patient data and are processed by the 
same clustering algorithm. Only the lists of selected variables are different between the two screenshots. 
 
In addition, users can mouse over both edges (the grey areas) and nodes (the blue rectangular areas) to learn 
more about the corresponding participants. Details such as the number of participants and cluster labels are 
included in the provided data. Finally, users can select an edge to see dynamically computed statistics from 
the corresponding cluster. The statistical summary, visible in Figures 2 and 3, shows mean values for 
variety of features and other descriptive statistics. By clicking one by one on the edges in the visualization, 
users can compare and contrast the profiles of different patient subgroups and begin to learn what 
participant factors might associate with the progression patterns seen in the Sankey-based visualization. 
 
 

 
Figure 2. A screen capture of our prototype implementation applied the study data. The four vertical lines 
of blue rectangles correspond to the four time steps in the data: ED, W6, M6, and Y1. The left sidebar 
shows the systems variable selection controls while the right sidebar shows detailed statistics for the 
selected group of participant. 
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Figure 3. An alternative view of the same data being visualized in Figure 2. The differences in pathways in 
the visualization are caused directly by the user’s interaction with the variable controls panel.  
 
5. Conclusions 
 
This paper described a visual analysis method designed to uncover patterns of participant evolution in 
longitudinal survey data. Our approach applies cluster analysis algorithms independently to the subsets of 
survey data collected at each time step. We adopt a Sankey-based visualization design to illustrate 
participant cluster dynamics over time. Interactions are supported, allowing investigators to identify 
common participant subgroups and evolution patterns, inspect derived statistical summaries, and compare 
findings between participant subgroups. We demonstrated our method using data from a 1-year survey 
capturing data about pain for roughly 1,000 participants who were admitted to the emergency department 
(ED) following a vehicular accident. We demonstrate how our methods can be applied to this dataset and 
show examples highlighting the types of analyses that our approach supports. 
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Abstract 

Time Motion Studies are used to collect the quantitative data required to study clinical workflow and provide 
evidence for decision makers in healthcare. These are time and resource intensive studies, partially due to the 
extensive training process required to achieve acceptable reliability among observers. We postulated that the training 
process could be optimized by providing visualizations accompanying the commonly cited statistics, informing 
researchers on directed actions to improve the observers’  reliability based on these visualizations. A prototype was 
developed and used in a workflow time study. Researchers perceived the visualizations as a substantial contribution 
to  the  observers’  training  process. 

 

INTRODUCTION 

Clinical workflow is a current topic of research addressing some of the most critical issues in healthcare 
delivery, including patient safety and quality of care by detecting medication errors1,2 and assessing timeliness of 
treatments3,4 and procedures5,6, also focusing on productivity7,8, efficiency9,10 and optimization of   clinicians’  
workload11,12. In order to collect the necessary data and information to assess these issues, hospital administrators and 
clinical workflow researchers rely on mixed methods. To understand, they use qualitative approaches such as 
ethnographic studies and interviews13. To measure, they rely on quantitative time and motion measurement methods 
borrowed from the industrial engineering arena14,15, generally known as Time Motion Studies (TMS).  

Among the techniques available to conduct  TMS,  “workflow  time  study” is the most used16. In this variation 
of TMS, observers continuously follow a subject for a predefined period of time and record tasks as they occur, 
producing a data schema of time-stamped sequences of tasks12,17. This technique allows observers to track unexpected 
instances of tasks, accounting for task fragmentation, interruptions, and the real-world variability of clinical workflow. 
However, unlike other TMS techniques, workflow time studies 
substantially increase the burden on observers, raising concern 
over   observers’   reliability. Although every data collection 
method requiring a human interface should include a reliability 
assessment, this is not systematically reported in TMS due to a 
lack of a standards to conduct Inter-Observer Reliability 
Assessments in these scenarios (I.O.R.A.) 18. 

IORA in workflow time studies is usually conducted 
by having two independent observers follow a common subject 
at the same time, capturing data separately, and then comparing 
the recorded data [Figure 1]. The myriad of statistics used for 
these analyses include the Kappa coefficient, the Bland-Atman 
plot and Limit-of-Agreement   estimates,  Pearson’s  correlation 
and Intra-class correlation18. Although these methods only 
assess one dimension of the agreement (either duration or 

 

Figure 1: Example of how IORA is conducted in 
workflow time studies. Two observers follow the 
same subject and capture data independently, to later 
assess their agreement in naming and/or timing the 
recognized tasks. Modified from spotmatikphoto © 
123RF.com, standard license. 
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naming of tasks), they provide an interpretable scalar value that authors use to report reliability (with arbitrarily cut 
points for acceptable reliability).  

Regardless of the method reported, researchers attempt to achieve and maintain a minimum acceptable IORA 
in order to assert valid data for their analyses. Thus, these IORA play a crucial role in   the  observer’s training, by 
reassuring the investigator that his observers are consistent with each other and ready to capture valid data. 

Conducting IORA and training observers is a very resource intensive activity, devoting several hours to 
achieve an acceptable reliability19, guided mainly by the IORA scores produced by the statistics above mentioned. We 
hypothesize that the   training   of   the   observers’   could   be   improved   and   facilitated by providing investigators with 
visualizations  describing  how  those  results  were  obtained.  On  top  of  reading  a  score  that  informs  “how”  observer  are  
performing, we envision visualizations providing information   on   “why”   observers   achieve that score, thus 
empowering the investigator with knowledge on directed actions to improve the reliability. 

 In this project, we aimed to design visualizations to complement the most used statistics in IORA, implement 
them onto a time capture tool broadly used to conduct TMS20 and evaluate the perceived impact of these visualizations 
on  the  observers’  training  phase  of  a  TMS. 

 

METHODS 

Visualizations. 

 We focused on two of the most cited statistics used to report IORA18: The  Kappa  coefficient  and  Pearson’s  
correlation to report agreement in naming and in timing respectively. The Kappa coefficient measures pairwise 
agreement among a set of coders making categorical judgments, correcting for expected change agreement21, and is 
usually reported as a float between 0 and 1 (predefined cut points to interpret the agreement are generally accepted22). 
Pearson’s correlation is also informed as a float, between -1 and 1 (interpreted as negative and positive correlation 
respectively, or 0 for no correlation). We focused our design efforts on providing the investigators with visualizations 
on the contingency tables used to calculate kappa and the plot to visualize deviations from the best-fit  line  for  Pearson’s  
correlation, informing them on agreement on each pair of tasks. We used a user centered design approach working 
closely with two experienced researchers in TMS. The visualization were iteratively improved and validated 
throughout the development cycle. 

The Software. 

The Time Capture Tool (TimeCaT) is a comprehensive, flexible, and user-centered web application 
developed by the department of biomedical informatics at The Ohio State University to support data capture for 
TMS20. It provides a friendly touch-time-stamp interface: the user simply clicks a button with the loaded task-name, 
and a time-stamp is created. TimeCaT is accessible at http://www.timecat.org and available at no cost to non-profit 
researchers. Although the tool is not open source, we participate in the development and have knowledge of the 
system, architecture, and database schemas. We implemented the visualized IORA on a Beta release of TimeCaT.  

The Workflow Time Study 

The visualizations were implemented in TimeCaT and used for a workflow time study conducted in an 
outpatient clinic of The Ohio State University Wexner Medical Center. The main research question focused on changes 
in workflow and impact on duration of specific sections of patient encounters. The workflow time study principal 
investigator had previous experience conducting these studies, and was a familiar user of TimeCaT. A medical doctor 
with previous experience in conducting continuous observation and familiar with the outpatient clinic workflow served 
as the gold standard observer, training six nursing students. We invited them to use the BETA release of TimeCaT 
which included our visualizations for the IORA module. They agreed to participate in the evaluation of the IORA 
visualizations, and included us in their IRB protocol due to the nature of the data being collected. A total of twenty 
four IORA sessions were conducted (4 observations per each trainee against the gold standard observer). 
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RESULTS 

Visualizations 

We designed and implemented three visualizations in the IORA 
module on TimeCaT: a side by side visualization of both observations, 
contingency tables for kappa calculations, and a  scatter  plot  for  Pearson’s  
correlation coefficient. In order to maximize the ease of interpretation and 
complementariness of the visualizations, different colors were arbitrarily 
assigned to task names and were maintained consistent within the report, 
helping to identify tasks across visualizations. The reports were made 
available immediately after the observations were completed, providing on-
site feedback before performing further IORA sessions. Given the web-
based nature of the application, the principal investigator could 
simultaneously assess the performance remotely and provide guidance if 
required. 

Side by side visualization of an IORA session. Based on the asynchronous 
sample report of Mache’s  tool23, we designed side by side visualizations of 
each IORA session, representing the gold standard next to the trainee, and 
added a zoom functionality. In this visualization, each observation is 
displayed vertically from start to end (top to bottom), and each sequential 
task is represented of a different color (representing different tasks names), 
while the duration of each task is represented by the height of the block 
[Figure 2]. 

Contingency tables for kappa calculations. Kappa’s   contingency tables 
were created, and iteratively refined from a raw model to an easy to 
interpret graphic. Incremental improvements resulting from the validation 
included getting rid of empty cells content (removing the zeros), fixing cell 
width by verticalizing the table headers, coloring the agreements in green 
and the disagreements in red, and providing a hover effect to easily identify 
row/columns intersections [Figure 3]. 

Scatter  plot  for  Pearson’s  correlation  coefficient. Since the desired outcome 
of the visualizations was not to re-display the Pearson result (assessing the 
slope of the best fit line), in lieu of plotting the best fit line for the paired 
data regarding tasks duration, we created a visualization showing the slope 
of one (perfect positive agreement). Thus, the investigators could easily 
assess which points fell below the line, representing pairs where the trainee 
recorded a shorter duration than expected, and which points fell above the 
line, representing pairs where the trainee recorded a longer duration than expected [Figure 4].  

 

Feedback from the users 

The   composite   IORA   resulted   in   a   solid   foundation   to   guide   observers’   training.   Both   the   principal  
investigator and the gold standard observer found the visualizations to be easy to interpret, identifying the side-by-
side visualizations as the most useful component to train the observers. They also highlighted the ability to assess the 

 

Figure 2: side by side visualization of an 
IORA session. Each column represents 
one observation: the gold standard 
observer on the left, and the trainee on 
the right. The investigator can easily 
identify any major disagreements at a 
glance. 
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reliability on-site in real time as a major advantage compared to any other time capture tool, having complete reports 
to discuss ways to improve the performance in the field, producing a clearer feedback for the trainees. Based on the 
visualizations they were able to discuss errors such as the granularity of the tasks being recorded (the trainee capturing 
more tasks than the gold standard), errors in naming tasks (the trainee naming a task differently) and errors in timing 
tasks (the trainee being late or early at recording the data), all of which were either unavailable, or required a long, 
asynchronous and manual analysis of the data. 

 

DISCUSSION 

Our visualization module was perceived as an optimization of the current training process by researchers 
conducting workflow time studies. The clear information allowed them to take directed corrective actions, previously 
unavailable. Although the side-by-side visualization was first introduced by Mache’s  tool23, the web-application nature 
of TimeCaT provided a unique advantage: the gold-standard can assess the IORA session on-site, immediately after 
the observation is completed. Thus, he could provide immediate feedback and take corrective actions in the field, 
where it seemed to be more helpful for the trainees. Finally, the new visualizations for Kappa and Pearson proved to 
be a helpful feature for more in-deep assessments of click-accuracy, both in naming tasks and timing tasks. An 
optimized training phase could reduce costs of conducting TMS, and moreover, lead to increased reliability among 
the observers, which in turn produces more valid data to analyze and reason upon. 

The concerns on the suitability of each of the statistical tests reported in IORA for TMS, as well as 
apprehensions on the data transformation required to implement them, are beyond the scope of this article. We 
acknowledged the lack of standards on how to conduct IORA, and thus based our visualization on two of the most 
used statistics in order to provide researchers with more information to optimize the training of their observers, given 
the current practices. We are not promoting nor validating the use of these statistics. Our team is concurrently working 
on a new composite IORA protocol to empower workflow researchers with a standardized and comprehensive method 
for  validating  observers’  reliability  and,  in  turn,  the  validity  and  representativeness  of  the  data  collected (unpublished 
work). 

   

 

Figure 4: Scatter plot representing the concordance between the 
duration of each task captured by the gold standard and the 
trainee. Everything below the black diagonal represents a task 
captured by the trainee that is shorter than the gold standard. 
Anything above represents a task captured by the trainee that is 
longer than the gold standard. 

 

Figure 3: Contingency tables for Kappa calculations. 
On top, the original table resulting from the IORA 
session. Bottom, the optimized visualization of the 
same table, removing empty cells, contrasting 
agreements v/s disagreements, maintaining color 
scheme for tasks, and providing a hover effect for rows 
and columns for ease of interpretation. 
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Limitations 

Our evaluation only consisted on a single workflow time study, and assessed the perception of two users. 
Given our positive findings, we included the module as part of the latest stable TimeCaT release and expect to collect 
broader feedback and run formal usability evaluations in the future. 

CONCLUSION 

The   IORA  visualizations   proved   to   be   perceived   as   a   substantial   contribution   to   observers’   training.  By  
optimizing the training process, they could reduce the time and resources required to train observers, and even 
contribute to achieve better IORA scores, which gets translated on to more valid data from these observations. The 
proposed visualizations for IORA are freely available for researchers using TimeCaT, accessible at www.timecat.org. 
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Abstract 

We present radial coordinates, a multivariate visualization technique based on parallel coordinates. The 
visualization contains a number of features driven by the needs of health-related data analysis, such as integrating 
categorical and numeric data, and comparing user-selected subpopulations via ribbon rendering. We illustrate the 
utility of radial coordinates by exploring primary care trust (PCT) and practice-level data from the United 
Kingdom’s National Health Service, using three examples: lung cancer rates among PCTs, various cancer rates 
among only London suburb PCTs, and medical problem prevalence among over 1500 London practices. 

Introduction 

With the ever-increasing size and number of health-related datasets, new analytical tools are becoming necessary to 
enable enhanced understanding of the vast amount of information contained within. Visualization leverages the 
power of the human visual system to reveal patterns and relationships in data by mapping the data to visually salient 
features. 

One of the challenges for visualization of health-related data is the desire to incorporate data of many types (e.g. lab 
results, demographics, medications, vital signs, and genomic data) from various sources. We have developed a 
multivariate visualization technique, radial coordinates, that enables visual analysis of a wide range of health-related 
datasets and handles both numeric and categorical data (Figure 1). Radial coordinates facilitates the interactive 
exploration of datasets to reveal patterns in the data, discover relationships between variables, and compare user-
defined subpopulations. In this manner we support the pursuit of hypothesis formations that can elicit further inquiry 
and lead to new knowledge.  

An overview of an initial radial coordinates prototype applied to query data was given previously.1 In this paper we 
provide a more in-depth description of the various features of a new implementation, which includes several new 
features, and discuss its application to primary care trust (PCT) and practice-level data from the National Health 
Service (NHS) in the United Kingdom (UK). We present three examples illustrating the use of radial coordinates to 
explore the NHS data: lung cancer rates among PCTs, a comparison of various cancer rates among London suburb 
PCTs, and medical problem prevalence among over 1500 London practices.  

Previous Work 

Our visualization is based largely on parallel coordinates, a multivariate visualization technique which represents 
each dimension as a parallel axis, and each data entity as a line connecting the entity’s value at each axis.2,3 Non-
parallel arrangements of axes have also been investigated.4 Our radial coordinates arrangement differs in that the 
radial layout maintains a square aspect ratio even with many axes, and enables utilization of the space in the center 
of the radial layout. Parallel coordinates have been combined with various other visualization techniques5-7, 
including direct integration of scatter plots.8,9 In our visualization we include a scatter plot based on the first two 
principal components to enhance the ability to find clusters in high-dimensional data in an intuitive manner (Figure 
1a).  Future work will explore combinations with other techniques. We also incorporate chords representing the 
correlations between axes in a manner similar to Circos.10 Extensions to parallel coordinates for incorporating 
categorical data include parallel sets11 and hammock plots.12 Both represent multiple data points as paths between 
axes, with the number of data points encoded as path width. Our curve spreading technique incorporates categorical 
and continuous data while still enabling the visualization of individual data points (Figure 2). Various techniques 
have been developed to combine multiple data points to enhance the understanding of large datasets13,14 and observe 
clusters via edge bundling techniques.15,16 Our ribbon rendering technique enables enhanced visualization of user-
selected data points, including overlaying information of statistical data (median value and quartile ranges) of 
interest to the health-care community (Figure 1b). Axis ordering is an important element of parallel coordinates 
visualizations, as it is typically easier to notice relationships between variables with adjacent axes.17-19 We employ a 
correlation-based clustering technique and also introduce dynamic reordering of categorical axis values to cluster 
similar values based on user-defined selections (Figures 3c, 3d). 
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Methods 

Data 

PCTs, abolished in 2013 due to NHS reorganization, were regional administrative bodies in the UK responsible for 
commissioning health services from providers and providing community health services. Here we investigate 26 
variables measuring various health and socioeconomic factors for 147 of the 152 PCTs in England (five were 
removed due to missing data). Health factors include cancer rates, drug prescription rates, and factors related to 
diabetes prevalence and treatment. Socioeconomic factors include socioeconomic deprivation, economic output, 
geographic region, and local region classification (e.g. Manufacturing Towns and Coastal and Countryside) from the 
Office for National Statistics (ONS). 

We also demonstrate our visualization with data showing the prevalence of a number of medical problems (e.g. 
diabetes, dementia, and obesity) in the 1504 practices in the London strategic health authority (SHA). There were 
ten SHAs in England from 2006-2013. 

Visualization  

The radial coordinates visualization, implemented using the D3 JavaScript library20, represents each variable in a 
multivariate dataset by an axis, with the axes arranged radially around a circle. Each individual entity is represented 
by a curve that connects the value of that entity at each axis. Figure 1 gives an example applied to PCT data, with 
four PCT curves highlighted in red by the user. 

 
Figure 1. Radial coordinates visualizations of NHS PCT data. User-highlighted curves (red) enable the comparison 
of four PCTs across multiple variables (a). A linked scatterplot of the first two principal components can help show 
clusters in high-dimensions (a1). Chords connecting axes represent correlations (positive: red, negative: blue) above 
a user-defined threshold (a2). Ribbon rendering enables a simplified representation of user-defined subpopulations, 
displaying the data range optionally overlaid with median value and inner quartile ranges (b). Mouse over of an axis 
shows all correlations with that axis, regardless of user-defined threshold (b). 

User selection of individual curves enables a visual comparison of how different entities relate across the various 
axes. A radial layout elegantly handles large numbers of axes while maintaining a square aspect ratio, also enabling 
the use of the center of the layout for supplemental visualizations, such as axis correlation chords and a scatterplot of 
the first two principal components (Figure 1a). Ribbon rendering uses a sliding window algorithm to draw the area 
between the innermost and outermost boundary of selected curves in a semi-transparent solid color, making it easier 
to see the spread of each subpopulation. An optional summary statistic overlay shows the inner quartile range and 
median value of each subpopulation (Figure 1b). Other visualization features include data-type dependent axis 
distribution visualizations and curve spreading for categorical and discrete data (Figure 2). 
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Figure 2. A sample data set without (a) and with (b) data-type dependent axis distribution visualizations and curve 
spreading. Axis distribution visualizations represent categorical axes as a stacked bar chart, discrete numeric axes as 
a histogram, and continuous numeric axes as a quartile plot21, enabling rapid evaluation of the data type and overall 
distribution of the data for each axis. Curve spreading for categorical and discrete axes enables improved 
visualization of individual curves and clusters of curves, such as the number of data points with a Categorical value 
of Cat 1 and a Discrete value of three (highlighted in blue). 

Results 

Lung Cancer Prevalence 

In Figure 3 the user has clicked on the lung cancer rate axis (lung_Combined_DSR), causing PCTs in the upper 
quartile of lung cancer rate to be automatically colored red, and the lower quartile blue. High and low lung cancer 
rates can now be compared across all dimensions in the data (Figure 3a). In the upper portion of the visualization it 
is apparent that PCTs with high and low lung cancer rates also tend to have high and low values for extent, 
average_score, average_rank, and local_concentration (also indicated by the correlation chords connecting these 
axes), which represent measures of social deprivation (poverty rate, socioeconomic status, etc.) 

 
Figure 3. Visualization of lung cancer rates (red = upper quartile, blue = lower quartile) in 147 primary care trusts 
(PCTs) in the UK. High and low lung cancer rates tend to cluster based on regional classification (b), made clearer 
with automatic categorical axis reordering to cluster similar regions (c, d). 
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The red and blue curves also form clusters on the ONS_Area_Class_Group axis, a local region categorization from 
the ONS. Investigating this axis (Figures 3b-d) shows that Industrial Hinterlands, Centres with Industry, Regional 
Centers, and Manufacturing Towns all have high lung cancer rates, whereas Prospering Smaller Towns, Prospering 
Southern England, London Suburbs, and Thriving London Periphery all have low lung cancer rates. The discovery 
of such relationships via exploring the data visually drives the formation of causal hypotheses (e.g. pollution levels 
or smoking prevalence), which can be investigated further. 

London Suburb Comparison 

In Figure 4a a single PCT, Harrow, was seen to have the lowest lung, bladder, and colorectal cancer rates compared 
to all other PCTs, and has been highlighted in red. Harrow is classified as a London Suburb, so in Figure 4b the user 
has highlighted the other London suburbs in blue for comparison, made easier in Figure 4c via ribbon rendering. 
Harrow is shown to have a much higher value for the oesophageal_Combined_SRR axis, and thus a much higher 
esophageal cancer rate, than the other London suburbs, which are almost all in the lower quartile. This visualization 
raises the question of why Harrow has such a disparity in the rates of different cancers. 

 
Figure 4. The Harrow PCT (red) has the lowest lung, bladder, and colorectal cancer rates (circled) among all 147 
PCTs in the NHS dataset (a). Comparing Harrow to the other London suburbs (blue) reveals that Harrow has a much 
higher esophageal cancer rate (circled) than the other suburbs (b). Ribbon rendering makes it easier to visually 
compare Harrow with the other London suburbs (c). 
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According to the 2011 Census22 Harrow is very diverse, with 63.8% of its population from the Black and Minority 
Ethnic communities, including the highest concentration of Sri Lankan Tamils and Gujarati Hindus in the UK and 
Ireland. India is known to have relatively low cancer rates in general, but some of the highest rates for oral and 
esophageal cancers in the world23, which may help explain this phenomenon. Although further analysis is necessary, 
this example shows the utility of radial coordinates and ribbon rendering to compare subpopulations. 

Practice-Level Data 

Figures 8a and 8b show the prevalence of various medical problems (e.g. diabetes, dementia, and obesity) in the 
1504 practices in the London strategic health authority (SHA). Figure 8a highlights in red two practices that appear 
to be outliers in the PCA scatterplot. Ribbon rendering makes apparent that they have the two highest prevalences 
for 12 of the 21 medical problems represented in the data. Figure 8b applies ribbon rendering to the remaining 1502 
practices, making it easier to compare maximum and minimum values of medial problem rates for the two 
subpopulations. 

 

Figure 8. Two out of the 1504 practices in the London SHA, highlighted in red, have the two highest prevalences 
for 12 of the 21 medical problems represented in the NHS practice-level data (a and b). Comparing the PCTs 
containing these practices (red) to all other London PCTs (blue) does not reveal any major differences (c). 

The two practices highlighted in red are Royal Hospital Chelsea in the Kensington and Chelsea PCT, and 
Nightingale House in the Wandsworth PCT. Because these two practices stood out so dramatically in the practice-
level data, the user performed a PCT-level comparison of all London PCTs (Figure 8c). Interestingly, the 
Kensington and Chelsea and the Nightingale House PCTs (red) do not appear very different when compared to the 
other London PCTs (blue). Further research determined that Royal Hospital Chelsea is a retirement and nursing 
home for British soldiers and Nightingale House is a nursing home for the Jewish community that specializes in 
dementia, which may explain the high prevalence of problems such as dementia, hypertension, stroke, heart failure, 
and cancer in these two practices. 

Conclusion 

We have presented radial coordinates, a multivariate visualization technique based on parallel coordinates that 
incorporates features, such as per-axis population distribution visualizations based on data type (continuous, 
discrete, and categorical), direct visualization of correlations between variables, curve spreading for discrete and 
categorical data, visualization of summary statistics for user-selected subpopulations via ribbon rendering, and 
automatic reordering of categorical values based on user selection, driven by the needs of health-related data 
visualization. 

We have applied radial coordinates to data from the UK’s NHS at both the PCT and individual practice levels. 
Visualization of lung cancer rates among PCTs discovered possible relationships among lung cancer rate, 
socioeconomic factors, and regional classification. A comparison of London suburb PCTs revealed a potentially 
interesting PCT with a much higher esophageal cancer rate than other similar PCTs. Visualizing medical problem 
prevalence among over 1500 London practices showed two practices that have much higher rates of many medical 
problems. These examples illustrate the utility of the combination of visualization techniques embodied in our radial 
coordinates tool, and underline the need for further research in the use of visualization to aid in the analysis of 
complicated health-related datasets. 
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MANUSCRIPT 
Background and Significance 
Hospital acquired infections are of particular concern for infection preventionist (IP) professionals. 
Surveillance is a critical part of infection control. 1-3 Increased electronic health record (EHR) adoption 
provides the technology setting for improving surveillance efforts through automation. 1,2,4,5 Therefore, 
Electronic Surveillance Systems (ESSs) capable of tracking trends of infections have been demonstrated to 
have moderate to excellent utility when compared to non-automated surveillance systems. 2,3,6 
 
Infection preventionist (IP) professionals spend a majority of their time ranging from 39-45% dedicated to 
infection surveillance and analysis. 7,8 A study by Grota et al. found that all IPs, regardless of ESS status at 
their institution, did not display differences in the way they spent their time concerning infection prevention 
activity or location. 3 These studies may collaboratively indicate that traditional methods featured in most 
surveillance systems are not effective at decreasing time spent on monitoring infection. 
 
There is limited evidence of implemented visualization tools customized for a community hospital to aid 
IPs in the detection and remediation of infectious disease. This case study is an example of how visual 
analytics in healthcare can impact infection prevention and control efforts. The model was developed at 
Augusta Health, a 255-bed community hospital staffed by approximately 180 physicians and 2,300 
employees. The hospital has 12,000 admissions annually, totaling 52,000 inpatient days, and has 60,000 
annual emergency department encounters. In addition to acute and surgical care, the hospital also offers 
psychiatric, skilled nursing, and rehabilitative services. 
 
Objective 
Our objective was to create an in-house visual representation of infectious disease data analytics with the 
goals of decreasing data mining and analysis by IPs, as well as distribute infection data to physicians, 
nurses, and ancillary staff in a tangible mechanism. 
 
Materials and Methods 
The data visualization aspect is a feature set of a custom infection surveillance application under 
development at Augusta Health.  Data is updated on a regular basis from the MEDITECH data repository 
relational database system that serves as the platform for data collection and analysis for the tool.  The data 
repository serves as a long-term archive of all EMR data.  The transfer of data from the proprietary EMR to 
the data repository is near real time.  Because the hospital’s market share is approximately 70%, the 
majority of admitted patients have administrative and clinical data from previous visits assisting in the 
collection of historical patient data for review. 
 
The visualization combines the data elements of positive organisms and their attribution to specific patients 
and their occupied rooms. The count of infected patient stays in a room is superimposed over the hospital 
floor plans showing the pattern and spread of infections. 
 
Results 
The resulting interface is shown in Figure 1. The intensity of the color was designed to be proportional to 
the number of positive patients that have occupied the room within a specific time period. The date defaults 
to a range including the last 365 days but can be modified as desired. Furthermore, the visualization can 
also be filtered for specific organism, such as Methicillin- Resistant S Aureus or Clostridium difficile as 
shown in Figure 2. 
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!
Figure 1: Visualization of the number of patients infected in each hospital room based on the last 365 
days 

 
Figure 2: Visualization of the number of patients infected in each hospital room based on the last 365 
days for C. Difficile Toxin 
 
 
Discussion 
 
The role of the IP professional is expanding from just surveillance of infection and provider behavior to 
include implementation of processes aimed at decreasing infection rates. 7,9 Therefore, instantaneous 
graphical representation of surveillance data may benefit IPs by easing their role of data mining and 
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analysis and allow more time for interventions. The visualization can assist the IP to see where preventative 
measures have failed and/or if environmental conditions need addressing. Graphing over time also assists 
IPs in detecting patterns. Like the room visualization, this can also be modified to show a custom date 
range and or filtered for specific organism. Grota et al. described ESSs as used frequently by IPs for data 
mining, but minimally by other infection prevention staff. 3 The graphical surveillance is automated in near 
real time. This feature allows IP professionals to relay important infection related information to 
physicians, nurses, and ancillary staff without further translation of data into decipherable information. 
 
A significant strength of this custom application is that it can be implemented using off the shelf products 
populated with readily available EMR data. Limitations include the necessity to fit the model to a specific 
hospital floor plan however once the concept was developed and floor plans retrieved, this aspect was 
relatively quick work. 
 
A future expansion of this application is planned to include the capability to visually track the patient to 
multiple rooms. An example of this future expansion is shown in Figure 2. This feature is necessary to 
ensure environmental measures have been executed after an infectious patient has occupied a room.  This 
feature would be even more critical when an infection is discovered after the patient had been hospitalized 
for several days and had been transferred to multiple units during the period. 
 
Conclusion 
Research indicates that sophisticated systems have the potential to improve surveillance efforts while 
helping to control costs. 3 Improvements in Health IT infrastructure have set the stage to take advantage of 
improved surveillance through visualizations. Custom solutions integrated with the hospital EHR at 
Augusta Health have been developed and are currently in place including a tool used to estimate a patient’s 
predisposition to clostridium difficile infection. 10 Feedback from this development indicates that additional 
customizations will be supported. 
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Abstract 

In this paper we describe a comparative analysis of two clinical data visualization development strategies: 1) use of 
an existing visualization tool and 2) development of new open source software (S/W). We evaluated two 
visualization projects at Intermountain Healthcare, which used the analytic health repository (AHR) as a common 
data source but adopted different visualization tools: Tableau and d3.js. We analyzed pros and cons of the two 
approaches in terms of clinical knowledge representation, data management, and development productivity.  

Background 

In developing clinical data visualization, two general approaches have been widely used. One is to develop clinical 
data visualizations using an existing open source or commercial tool (e.g. Tableau [1]) that provides a set of tool-kits 
that cover most necessary functionalities, including data retrieval and processing, front-end user interfaces, and 
visualizations [2]. The advantage of this approach is high productivity and a systematic development process, 
although functionality may be limited by the toolkits. The other approach is to develop a homegrown visualization 
application using open source S/W libraries (e.g. d3.js [3]). This provides more flexibility but requires additional 
S/W development efforts. Although there have been several implementations based on these approaches, to the best 
of our knowledge there has been no study to investigate pros and cons of the two approaches.  

Method 

We conducted a comparative analysis of the approaches based on two visualization projects at Intermountain 
Healthcare. The two projects used the AHR as a common data source, which is a distilled copy of clinical data from 
our enterprise data warehouse designed to simplify population-based research activities.  Its tables contain essential 
clinical data elements such as patient, encounter, vital sign, laboratory result, diagnosis, procedure, and medication. 
Since each table represents a very large data set, we created materialized views to prepopulate data as aggregated 
measures for fast responses to user inputs. Based on the materialized views, we developed two visualizations: 1) an 
open source based web application using d3.js [5], and 2) a Tableau based dashboard, which is a popular and richly 
functioned commercial visualization tool (See Table 1). Both applications are running within Intermountain’s 
firewall (See Figure 1). We analyzed pros and cons of the approaches (See Table 2). 

Table 1. Aggregated data types in the AHR and implemented visualizations 
Category Data type Visualization type 
Patient demographics #Patient *Line chart, bar chart; +Parallel set, donut chart 

Encounter #Encounter, #Patient *Line chart, bar chart, bubble chart 
Vitals / Laboratory result #Record, #Patient, Descriptive 

statistics, Bin/Frequency 
*Line chart, bar chart, histogram, bubble chart; +Box plot, 
chord diagram 

Diagnosis / Procedure / 
Medication 

#Record, #Patient *Line chart, bar chart, bubble chart; +Word cloud, tree map 

*Tableau and d3.js, +D3.js 

   
Figure 1. a) d3.js based visualization; b) Tableau dashboard 
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Table 2. Differences of implementation between d3.js and Tableau 

Category d3.js based development Tableau based development 
Visualization 
generation 

Selected visualizations from more than 219 
visualization types in github.com and 
downloaded source codes. Additional data 
preprocessing and data format validation were 
done to feed AHR data to the libraries. 

Selected visualizations from Tableau provided 24 
visualization types. Automated generation of 
visualizations and data format validation was supported 
by Tableau authoring environment. 

User interface Developed customized web pages and filters 
using HTML5# 

Used Tableau dashboards and filters 

Data storage JSON* file Tableau data extract+ 
Data retrieval 
and 
processing 

A Java program was developed to retrieve data 
from the materialized views and generate JSON 
files. 

Imported data from the materialized views using 
Tableau data connection. Once imported, Tableau 
maintains the data as Tableau data extract at both 
development and operation phase. 

Knowledge 
management 

Terminologies and class of hierarchies were hard 
coded.  

Mapped clinical concepts to surface forms (general 
names) using alias function, and create class of 
hierarchies using group function. These were done 
manually when creating filters at development phase. 

Development 
productivity 

An entire S/W development process from design 
to testing as well as a web developer and a 
database analyst were required.  

A general Tableau user with basic database knowledge 
could develop visualizations. A Tableau server and 
administrator were needed. No issue with S/W 
engineering and process. 

*JavaScript Object Notation, +A specialized data format for internal use in Tableau, #Hypertext Markup Language fifth revision 

Conclusion and Discussion 

Pros and cons: Overall, the advantage of using Tableau is high productivity at the development and operation 
phases, whereas the open source development strategy provides the flexibility of using a variety of visualizations 
and an extensible S/W architecture. The Tableau based approach required a relatively shorter development time. 
Cost is not a directly comparable factor since Tableau requires the purchase of commercial license while d3.js is free 
from a license cost but requires more S/W engineering effort and resources. For both implementations, since they 
commonly used prepopulated data in the materialize views, performance (response time to user inputs) was 
acceptable.  

Integrated clinical knowledge support is required. Since both Tableau and d3.js are general-purpose visualization 
tools and do not deal with domain knowledge, a knowledge base may be needed to support clinical knowledge such 
as standard terminologies and clinical data models. Class hierarchies are important for underlying concepts to 
support filters and zoom in/out, which are essential features of data visualization. Semantic linkages between 
concepts may be useful when a user changes visualization perspectives (e.g. moves from cardiovascular diseases to 
cardiovascular system procedures). To realize these functionalities in d3.js based applications, web development is 
required to integrate user interfaces with the knowledge base. In the case of Tableau, although the Tableau 
dashboard does not support direct connection with an external knowledge base, integration is feasible by utilizing 
Tableau’s Javascript APIs (Application Programming Interfaces), which enables a web application to embed and 
control remote Tableau visualization objects in HTML. 

A hybrid development strategy may be useful. In the case of implementing multiple visualizations, a hybrid 
approach could take the advantages from the both approaches. Developers may use Tableau for basic visualizations 
and use d3.js for specific visualizations which are not supported by Tableau. A clinical knowledge base and 
prepopulated data infrastructure will add value by providing a standardized and reusable way of managing clinical 
knowledge and data in heterogeneous visualization tools. 
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Abstract—In recent years, e-cigarettes and hookah have risen 
in popularity.  We take a novel approach to understanding the 
use and appeal of these tobacco-related products by applying text 
mining and visualization techniques to social media sources, 
comparing between the sources and making inferences about 
user experience. We describe two visualizations: an interactive 
heat map and a symptom polarity visualization.  The heat map 
may be used to explore differences across forums in terms of 
contextual factors of health behavior: e-cigarette and hookah-
related conversation, symptoms, quitting experience, health 
perceptions, sociality, sensory experience, setting, and time.  The 
symptom polarity chart may be used to investigate the nature of 
symptoms that are reported.  

Keywords—text mining; visualization; heat map; social media; 
electronic cigarette (e-cigarette); hookah 

I. INTRODUCTION 
In recent years, researchers have begun to realize the value 

of social media as a data source to understand health-related 
phenomena, for purposes such as influenza surveillance and 
identification of adverse effects from medications (e.g. [1-2]).  
This paper employs text mining and visualization techniques to 
compare social media discussions regarding two tobacco-
related products: e-cigarettes and hookah. A number of studies 
have examined e-cigarette and hookah in social media. Hua et 
al. [3] identified symptoms reported in discussion forums, 
while Myslín et al. [4] used Twitter to analyse smoking 
behavior and public perceptions of e-cigarettes and hookah. 

The growth in popularity of e-cigarettes has been 
documented in several developed countries, and is a growing 
focus of public health concern, especially in the United States 
and the European Union [5-6]. There has also been increasing 
concern about the use of hookah, a centuries old practice that is 
currently increasing in prevalence in the Middle East and 
worldwide [7-8].  The device is also called other names such as 
waterpipe, shisha, and hubble-bubble arghileh.   

We are developing a system that integrates text mining and 
visualization techniques to support exploration of discussion 
content about e-cigarettes and hookah.  In this paper, we 
describe two of the visualizations supported by the system.  

II. DATASETS 
We employ content from three websites:  Vapor|Talk, 

Hookah Forum, and Reddit.  Vapor|Talk and Hookah Forum 
are popular online communities that are dedicated to e-
cigarettes and hookah, respectively. Reddit is a generic 

platform that features subreddits focused on a broad spectrum 
of topics.  We expected that these samples might differ on a 
variety of characteristics. 

III. HEALTH BEHAVIOR CONTEXT HEAT MAP 
Previous comparisons of online communities have 

examined characteristics such as size, response rate, and 
typology [9].  We focus on a different type of characteristic: 
aspects of health behavior.  Estimating differences in 
prevalence of aspects of health behavior across datasets can 
help match research questions to appropriate data sources. 

To examine differences across datasets, we employed a 
heat map visualization.  Heat maps are often used in genetics to 
display gene expression patterns (e.g. [10]).  In a classic cluster 
heat map, one axis might represent samples, and the other, 
genes [11].  Cells are colored based on the level of expression 
of the gene in the corresponding sample. 

The health behavior context heat map was based on this 
work.  We select sub-forums on the websites which we 
compare along dimensions of interest: e-cigarette terminology, 
hookah terminology, symptoms, quitting experience, 
perceptions, health care practitioners, sociality, sensory 
experience, setting, time and cost.  These dimensions represent 
contextual aspects of health behavior. Differences in color 
intensity provide insight concerning interests and/or behavior 
patterns of the samples.  Each of the rows corresponds to one 
dimension, and the columns, to one dataset (Fig. 1).  

 

 
Fig. 1. Health Behavior Context Heat Map 
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As expected, e-cigarette related content is most popular in 
the Vapor|Talk forums and on the electronic_cigarette 
subreddit, and hookah content is popular in the hookah forums. 
Quitting and symptoms are mentioned most often  in the 
Vapor|Talk Health & Safety and the Stopsmoking subreddit. 
The cells of highest density for people, time and health 
perceptions also come from these two samples. 

IV. SYMPTOM POLARITY CHART 
The second visualization is a provisional symptom polarity 

chart based on a subset of forum data.  A rule-based extraction 
system was used to identify symptoms and their polarities.  A 
report was considered positive if a positive change in health 
status was reported, such as a decrease in frequency of 
coughing; and negative if a negative change, such as a sore 
throat, was reported. Symptom identification is based on a 
knowledge base developed for our system, which maps 
symptoms and their synonyms, to organ systems.  Clicking on 
the individual bars results in the posts containing the symptom 
reports being displayed.  One of the sub-forums with the 
highest density cells in the heat map, Vapor|Talk Health & 
Safety, is depicted in Fig. 2.  Members discuss a diverse array 
of physiological experiences, including headaches, sore throat, 
and changes in their experience of taste.    

V. CONCLUSION 
In this paper, we explore how text mining and visualization 

techniques might be integrated to facilitate comparison across 
social media datasets.  Heatmaps highlight differences across 
samples and inform dataset selection, and visualization of 
symptom polarity mentions may be used to make clinically 
relevant inferences.  
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Fig. 2 Symptom Polarity Chart: Vapor|Talk Health & Safety. 
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Abstract 

We present an interactive demographic visualization of multiple facilities across time that can be generalized. It 
provides not only users with an overview of patient demographic information of multiple facilities across time, but 
also offers detailed breakdowns of patient demographics such as age, gender, language, and race of a selected 
facility by allowing users to choose their view preference. When users mouse over a specific area of the bar graph of 
summary statistics on the facilities, four charts corresponding to the breakdown of demographic information (i.e., 
age, gender, language, and race) are updated dynamically. Furthermore, the visualization displays summary 
statistics of the selected facility that users are viewing. 

Introduction 

The electronic health record (EHR) data are complicated, reflecting a variety of patient health information, such as 
patient demographics, progress notes, medications, vital signs, laboratory data, etc. Studies have evaluated visual 
analytic tools for navigating and analyzing such health data, targeting ease of use of these complicated datasets. In 
one study, Wang and colleagues focused on navigating multiple records of categorical temporal data from the EHR 
[1]. The prototype of their visualization tool enabled users to align, rank, and filter the results of queries [1]. In 
another study, Zhang and colleagues focused on analyzing patient cohort data, building an interactive visualization 
application that enabled clinicians to explore patient cohort data by visualizing and refining cohorts [2].  

 
Figure 1. Interactive demographic visualization with four components: a set of check boxes for allowing users to 
determine any combinations of facilities based on their interest, a dashboard displaying the summary of the selected 
data with the name of the facility, the number of patients, and the year of the selected data, and four charts 
representing the patient demographic information (i.e. age, gender, language, and race). 
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In this paper, we introduce an interactive demographic visualization of multiple facilities across time with temporal 
patient demographics data to support users whose aim is to explore the existing clinical data to later conduct 
research. Based on the golden rule of data visualization such as overview, zoom and filter, and detail-on-demand [3, 
4], we applied the technique of “Level of Detail (LOD)” in creating our visualization. For LOD, in addition to the 
summary view of a cohort of the specific population [2], our visualization provides users with an additional four 
charts to represent detailed information of patient demographics by age, gender, language, and race.  

Target Users 

Our visualization is targeted to individuals who use data for generated through clinical care for research. The 
potential target users can be any biomedical researcher, such as faculty, residents, fellows, graduate students, or 
research staff. For such users, it is crucial to explore the information available about the data in order to generate 
questions, test feasibility, and conduct biomedical research on specific populations. For example, some clinical 
studies have age restrictions, others have gender restrictions, and some require information about the spoken 
language as they can only recruit English speakers.  

Visualization 

We generated visualizations with D3 Javascript library (http://d3js.org/). The visualization demonstrates patient 
demographic information of multiple facilities across time as illustrated in Figure 1. Users can choose any 
combination of facilities to explore the overview of patient demographic information. When users mouse over on the 
specific area of the bar graph, four charts corresponding to breakdowns of demographic information (i.e. age, 
gender, language, and race) are updated dynamically. For consistency, the four charts were colored with the same 
color of the selected area of the bar graph. On the top of each bar on the charts, the number of patients and the 
percentage of all the number of patients are displayed. 

Conclusion 

We have presented an interactive demographic visualization of EHR data from multiple facilities across time. Our 
visualization provided users with two main features to express “Level of Detail”: 1) allowing users to choose their 
view preference by filtering the source of data, and 2) displaying the detailed information based on their interest by 
hovering a mouse on the bar chart. These features allow users to navigate patient demographics such as age, gender, 
language, and race via four charts updated dynamically. While this prototype offers users dynamic access to basic 
demographic EHR data, validating its features would confirm potential for dissemination of use. This prototype 
provides a useful starting point to evaluate and iterate visualizations for broader dissemination [5, 6]. The dynamic 
nature of the web-based visualization method provides promise for researchers to interact with complex EHR data 
efficiently and easily and speed use of EHR data for discovery. 
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Summary 

This poster will describe some of the reports and visualizations that are possible using bibliographic data, resources 
needed for this work, the role of the library in helping individuals and groups accomplish this effort, and some 
strategies for visualizing data that go beyond basic publication data. 

Introduction and Background 

The ability to understand the real impact of research and clinical activities in the modern biomedical academic 
environment is a Sisyphean task, given the increasing complexity of today’s research and clinical care landscape. 
The sheer amount of relevant, related data from commercial and open data aggregators, as well as from the 
enterprise itself in systems such as the EHR, data warehouse, and research information systems, has never been 
greater. The scholarly publishing process is obviously a very important step of disseminating scholarly discoveries 
to the broader community. This bibliographic metadata can also play a valuable role in helping an institution gain 
insights about its research and clinical activities that might not be discernable from other means, including some of 
the available institution-level data stores. These insights allow both investigators and the institutions themselves to 
convey the benefits and impact of their research and clinical efforts to stakeholders, thus providing valuable 
information that can be used for benchmarking, forecasting, and strategic planning activities.  

Telling a Story 

Bibliographic data can be mined and visualized using a variety of techniques to gain a better understanding of a 
variety of critical facets of research and clinical care. Research Information Systems can offer “out of the box” 
visualizations to yield a better understanding of the expertise and collaborations by an investigator, or among a 
group of investigators. Bibliographic metadata can be harvested from open or commercial data aggregators and 
analyzed to characterize geographic scholarly dissemination and knowledge transfer as well as more broad 
dissemination of health and research discoveries to the general public. Bibliometric metadata can also be used to 
accomplish detailed trend analysis locally as well as across all of science for benchmarking and strategic planning 
purposes. Visualizing the linkage between publications and grant data enables investigators and grant funding 
organizations to better comprehend the impact of their grant portfolios, and the efficacy of their funding decisions. 
Trending of these linkages over time may help identify promising areas for future research.  Deeper investigation of 
this data could lend a better understanding of effective scholarly practice in a discipline. 

There are a wide range of data sources and tools available to accomplish this work.  These resources can vary 
widely, in terms of completeness, features, cost, and ease of use. The importance of good data cannot be 
overemphasized. Likewise, a variety of approaches can be employed to obtain quality reports and visualizations of 
research and clinical activities. Open source and commercial research information systems can offer features for 
visualizing various data contained in their systems, accomplishing social network analyses and contributing toward a 
smoother workflow, overall.  

Moving Forward 

Today’s modern research and medical libraries provide resources and expertise to their campuses that can be 
leveraged to accomplish data analyses and visualizations. The role of the librarian in accomplishing and supporting 
this work is essential, especially given the critical importance of data integrity and the role that librarians already 
play as valued team members on significant enterprise-level information projects. While still in its infancy and often 
not broadly available, many libraries are committing resources and staff to support this work on behalf of their 
institution. Libraries offer the campus a perfect combination of expertise, perspective, and resources to help support 
and advise their assessment and visualization of research impact across the peer-reviewed literature and beyond. 
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Abstract 

Diabetes mellitus not only continues to be a leading cause of morbidity and mortality in the United States, but is 
also a major contributor to the rising cost of health care. Poor understanding and inadequate communication of 
disease progression and modifiable factors from both physicians and patients is one of the major reasons for the 
suboptimal control of diabetes. Our goal is to help patients and physicians not only understand their current disease 
progression, but to also help them predict disease progression based on modifiable behavioral factors. This will 
help them focus their efforts on the behaviors that are helpful in gaining better control of diabetes and slowing the 
disease progression, which will help reduce morbidity and health care spending.  

Introduction 

According to a National Diabetes Statistics Report from 20141, 9.3% of the U.S. population has diabetes mellitus. In 
2010, diabetes was the seventh leading cause of death in the U.S. and in 2012, costs related to diabetes were 
estimated to be around 245 billion.  

One of the reasons diabetes continues to be among the leading causes of morbidity and mortality is poor disease 
control. According to a National Health and Nutrition Examination Survey (NHANES), diabetes is usually poorly 
controlled, and only 42.3% of surveyed patients had target HBA1c levels2.  One of the barriers to adequate diabetes 
control is that patients have a poor understanding of the disease3 and physicians are not helping their patients 
understand their health status4. Therefore, it is difficult for patients to determine the right behavior changes to make 
which results in poor motivation.  Understanding the impact of change or lack of, 5 and the ability to self-monitor a 
disease’s progression is likely to increase engagement6. Our goal was to show that claims or clinical data (or both) 
could be aggregated and visualized to show diabetes disease progression over time, using an accepted diabetes 
severity index. 

Visualization of current disease course  

In our model, we used the Diabetes Complications Severity Index (DCSI)7 to measure and visualize disease 
progression. DCSI scores range from 0-13 based on the count and severity of diabetes complications. The DCSI 
score is presented longitudinally within each patient’s medical profile.  

Modifiable factors 

Based on clinical literature review, we then identified modifiable factors with the greatest impact on disease 
progression and presented these in association with DCSI to help users understand the correlation. We utilized color-
coding to demonstrate compliance or non-compliance for each modifiable factor in addition to a visual indication of 
recent changes made to these modifiable factors.  

Predicting DCSI based on modifiable factors 

We used linear regression to predict future DCSI based on modifiable and certain non-modifiable factors and 
presented the projected DCSI to the users (clinicians and patients). We also allowed users to view the impact of 
various behavioral changes (based on modifiable factors) to their future DCSI to help motivate behavior changes 
and slow the disease progression.  
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Figure 1. Visualization of disease progression and modifiable risk factors 

 

Conclusion 

We believe that presenting this data will not only improve a physician and patient’s understanding of the disease but 
it will also emphasize the correlation between modifiable factors and disease progression. This enhanced 
understanding can be leveraged as a self-quantifiable, motivational tool, to initiate and sustain the behavior 
modifications necessary to slow disease progression.  We have shown that claims and clinical data can be modeled 
and visualized to give a possible guide to physicians and their diabetic patients as they try to modify the course of 
diabetes.  In future work, we will allow practicing physicians to use this data visualization and monitor behavior for 
signs of more efficient workflow and for measures of improved diabetes control both by both the physician and 
patient. 
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Abstract— New tools have been developed in Weave to aid in 
the analysis of patient data. Weave is a web-based visualization 
system.  The tools being introduced are InfoMaps and an 
Individual Record Tool.  InfoMaps enables the visual querying of 
document collections that can be linked to other data.  The 
Individual Record Tool is a prototype that provides a specialized 
view for patient data within the visualization environment 
Weave. The results are coordinated visualizations that permit 
looking at a single patient, related patients, and a complete 
collection of patients.  

Keywords—visualization; analysis; data; information 
visualization 

I. INTRODUCTION 
We have modified an existing visualization system, Weave, 

to allow for the visualization and analysis of both large patient 
data and developed a new visualization, called the Individual 
Record Tool (IRT) which supports the visualization of single 
patients or individuals. This new tool has been integrated with 
a novel tool in Weave called InfoMaps. Leveraging the two 
together   along  with   already   existing   “standard”   visualizations  
within  Weave’s  sessioning  system  allows  overviews of patient 
data while being able to drill down to single ones. 

II. WEAVE 
Weave is an open source web-based visualization platform 

designed to enable visualization of any available data by 
anyone for any purpose [1].  It provides coordinated 
visualizations, is targeted both for developers as well as end 
users, and supports integrated analysis and visualizations. 
Resulting visualizations can easily be disseminated in a web 
page. One  of  Weave’s  strengths  is  its  underlying  sessioning  
system.  Every interaction a user makes with the system is 
recorded in a timeline of events occurring during the session 
from the time the user started Weave. This information can be 
recorded and used to replay analyses, can be used to tell a 
story, and can be emailed or shared with others.  Utilizing 
Weave’s  built-in abilities, our additions support the analysis 
and dissemination of patient data. 

III. INFOMAPS 
InfoMaps is an information visualization tool designed for 

personal information management and for supporting data 
analysis [2].  We developed InfoMaps with the intention of 
linking large text document corpora with visualization and 

analysis.  InfoMaps allows for the querying of various papers, 
books, journals, and any other text corpus that has been 
indexed.  Some example views of InfoMaps querying a 
document cluster and then reporting back the results in various 
formats can be seen in Figure 1.  The data returned from the 
InfoMaps tool can then be linked with the data being used in 
the visualizations in Weave.  This allows for probing and 
selection to be linked across multiple tools that interact with 
InfoMaps.  InfoMaps helps to bridge the barrier between text 
document collections and visualization and analysis of 
structured data. 

 

 
Figure 1 InfoMaps Tool showing various query parameters and 
their results. 

 

IV. INDIVIDUAL RECORD TOOL 
The Individual Record Tool (IRT) specializes in viewing 

the details of one data point within the scope of many. It is 
based on Lifelines [3] and Tufte [4]. The  tool’s  layout  is  quite  
flexible and can be programmed to have different looks and 
feel. An example of the tool being used within the scope of a 
Weave workspace can be seen in Figure 2. We can see 
distinguished upper area and lower area. The upper area is the 
profile area which provides room for a picture along with lines 
of text to be used as descriptions.  The image and text can be 
loaded either from locally stored images on the server or a web 
accessible link, dynamically generated from columns of data, 
and can also contain customized user input. An analyst can 
lock the currently displayed record from changing as 
interactions take place in other Weave visualizations. The tool 
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updates what record it is viewing as the user probes and selects 
single records within Weave.  
 The lower area of the tool contains the plotter which 
contains axes to indicate the passage of time and descriptions 
of the parameters of the record being viewed.  Rectangles are 
drawn on the plotter based on the provided temporal data. A 
rectangle’s length is indicative of when and for how long an 
event occurred as in Lifelines.  The height and color of the 
plotted symbols can be customized by the user as well as 
adding other visual components.  Linked probing and selection 
are supported.  The IRT complements the rest of the tools in 
Weave’s  visualization  tool  suite  to  allow  for  in-depth analysis 
of patient data both at the global level (large data, maps, 
distributions, etc.) and at the local level by selecting individual 
patients and seeing them in the IRT. 
 A physician or clinician can look at an individual patient, 
look at similar patients in a scatterplot, select a few of these, 
see which documents relate to illnesses they have, read the 
documents, select one that discusses a protocol and see which 
selected patients it applies to. Weave thus goes from one to 
many to documents to subsets of the records back to 

documents and so on. Moving between text, data, and 
individual detailed views is fluidly provided.  
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Figure 2 An example Weave workspace for examining patient data. The top right tool showcases the Individual Record Tool. It can be 
seen that there is linked probing between the tools. This also holds true for selection. 
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Introduction 

In this demonstration we present a visualization tool for a cohort of patients with diabetes (via ICD9 codes) from 
Duke University’s data warehouse, visualizing their Hemoglobin A1c (HbA1c) levels over time, aligned by death, to 
explore trajectories of glycemic control. To the best of our knowledge, temporal visualization of glycemic control 
for a diabetic population standardized on death has not previously been presented. Our visualization groups HbA1c 
values into ordered categories of glycemic control, utilizing a method based on parallel sets and Sankey diagrams to 
view temporal patterns in HbA1c values. We incorporate a number of features for interactive data exploration like: 
viewing the progression of values either forwards or backwards in time, highlighting multiple subpopulations, 
coloring based on the category along each path in the data or at the beginning/end of each path, and the 
incorporation of demographic data, such as gender. 

Methods 

Data from Duke University’s data warehouse were extracted using DEDUCE, an electronic health record (EHR) 
query tool developed at Duke University. The final cohort includes data from 121 patients with diabetes mellitus 
(with and without complications), a death indicator, prescribed antihyperglycemics, and at least 10 years of HbA1c 
laboratory values. We average HbA1c values over 6 month time intervals. In the case of missing HbA1c values 
within a 6 month period, we first attempt to impute a HbA1c value from average glucose (AG) values over that 
period of time if available, otherwise the previous HbA1c value (measured or imputed) is carried forward. HbA1c 
values are then categorized based on the severity of diabetes: Normal < 5.7, Borderline [5.7, 6.5), Controlled [6.5, 
8), and Uncontrolled ≥ 8. The sampled data is time-aligned by the death event for each patient. The visual 
representation of diabetes progression propagates backwards in time initially. Time is represented as number of 
years before death in six month increments.  

 
(a)                                                                                               (b) 

Figure 1. Diabetes progression visualizations without and with a gender axis: (a) Overview visualization with paths 
colored by the current HbA1c at each time step, useful for emphasizing overall temporal trends. (b) Adding a gender axis 
and selecting two groups, we can compare the variability of males who were Uncontrolled at death (olive) to women who 
were Uncontrolled at death (purple). Men appear to have more variability over the 5-year period being visualized, as 
shown by the large number of transitions between different categories. 

Our visualization tool was developed using the D3 JavaScript library. The aim of this visualization is to investigate 
temporal trajectories of HbA1c levels for a large cohort of diabetes patients over a number of years prior to death. 
Parallel sets is chosen for showing HbA1c summary trajectories. Each vertical axis is a time step. The user can 
choose the frequency of these time steps, with a minimum sampling frequency of six months, and also the maximum 
number of years before death. The death event axis is placed at the right with all other time steps moving backwards 
in time to the left (Figure 1). Each vertical axis is split into the four HbA1c categories (Normal in green, Borderline 
in blue, Controlled in orange, and Uncontrolled in red), and a Missing category in grey (for patients with more than 
10 years of data). The height of each axis category represents the proportion of the patients in that category at that 
point in time. Paths moving between axes recursively split, moving backwards from death to show the trajectories of 
similar groups of patients. The visualization can show trends either starting at the death event, i.e. going backwards 
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in time, or starting at the last year in the visualization, i.e. going forward in time. The user can highlight one or more 
groups of patients by clicking on categories or trajectories to highlight the behavior of that group of patients going 
backward and forward in time, reducing visual clutter (Figure 2). We also include the ability to incorporate 
demographic data, such as gender, as additional axes (Figure 1). This feature enables the comparison of trajectories 
for different subpopulations based on data other than just HbA1c levels. 

 
Figure 2. A 10-year range of data, sampled every two years, with forward propagation to show how the trajectories of 
patients change moving forward in time (left). Highlighting enables a focused view of a single category, reducing visual 
clutter (right). 

The user can also chose between different types of coloring schemes for the paths: 1) color by the category at the 
first or last year (depending on the propagation direction), which shows the level of variation for a category over the 
length of the visualization; 2) color by transition, where the transition has a gradient from the source to target 
category color, useful for showing overall trends; and 3) color by reverse transition, where the transition path has a 
gradient from the target category to the source category, useful for category-level analysis of the distribution of 
source and target categories at a particular time step’s category (Figure 3). To reduce visual clutter, there is also an 
option to look at only static transitions (i.e. no change in category between time steps), and to look at only variations 
(i.e. only changes in the categories). 

 
Figure 3. In addition to coloring by the starting category, paths can be colored by a gradient from source to target category 
(left), which redundantly encodes the category at each axis to emphasize overall trends, or by target to source category 
(right), which enables a rapid analysis of where paths are moving to/from at each category. The circled regions highlight 
this difference. On the right, it is immediately obvious what category this trajectory came from at death (Normal in green) 
and how this group is distributed at the previous time step.  
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The University of Maryland Human-Computer Interaction 
Lab has developed EventFlow, which has distinctive 
innovative features such as: (1) visual representation of 
temporal patterns (of point and interval events) for 
individual records and for the aggregate of all records (2) 
novel graphical query language to pose temporal queries 
such as Find all records with Event A followed by B 
followed by C (infection, fever, bleeding), or Event A 
during Interval B (stroke while taking warfarin), (3) query 
results are presented visually, organized by the matching 
and non-matching histories, (4) a search and replace feature 
(replace all sequences of normal blood pressure point 
events with an interval that shows the duration, (5) efficient 
internal data structures to support retrieval and aggregated 
view presentation, and (6) many features to organize, clean, 
transform, and simplify the data. 
 
Temporal event data is a fundamental component of 
electronic health records. As such, many visualization tools 
have been designed for the exploration of this data type, 
however, they rely heavily on the assumption that the 
underlying data is fit to be explored. In many cases 
though, event patterns must be extensively transformed in 
order to better reflect either the real world events that 
generated them or the perspective of a given study. Without 
this step, population-level trends can be obscured. 
 

Temporal event data wrangling, however, is deceivingly 
difficult and error prone even for expert users. Standard, 
command-based query languages are poorly suited for 
specifying even the simplest event patterns, and attempts at 
more accessible query languages frequently omit critical 
features such as events that occur over a period of time 
(intervals) or the absence of an event. Perhaps most 
importantly is that query alone is not enough to get users 
through a typical temporal event data wrangling process. 
Event patterns not only need to be found, but also 
transformed and re-represented. An improved query and 
wrangling process not only benefits database professionals, 
but also dramatically increase the range of users who can 
access this type of data. 
The EventFlow visualization tool is built to extend beyond 
the typical bounds of data exploration, and serve as a 

critical aid for both temporal event query and data 
transformation.   
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Figure 1 – The EventFlow interactive analysis tool 

(www.cs.umd.edu/hcil/eventflow) with a small sample 
dataset. On the left are found controls and legend, in the 

middle is the overview of all sequence patterns in the dataset, 
and on the right a scrollable timeline browser shows all the 

individual records.  The top sequence in the overview is 
selected (drug A, followed by stroke, followed by drug B).  

The distance between events corresponds to the average time 
between events. The height of the bar corresponds to the 

proportion of records with that sequence. The records with 
the selected sequence are highlighted at the top in the 

timeline view. 
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Figure 1. Interactive HCC Gap Browser presents information 
organized by HCC category, opportunity groupings, and 
patient-level opportunity risk and risk gaps. 

HCC Risk Browser: Visualizing Opportunities and Interventions 

Michael A. Simon, PhD1, Nick C. W. Stepro1 
1Arcadia Healthcare Solutions, Burlington, MA 

Abstract 

Effective extraction of information related to patient care has only grown in importance with increased demands on 
a more productive provider environment, more effective population health management, and lower overall cost of 
care for a diverse population. Yet, visibility into even basic measures is inhibited by disparate and inadequate 
storage systems, communication mechanisms, and provider workflows1. One such example is the Centers for 
Medicare and Medicaid Services (CMS) Hierarchical Condition Category (HCC) Risk Adjustment algorithm. This 
algorithm is canonically defined by one data stream but is in fact better defined by a much wider dataset. Here, we 
describe a data model meant to visualize sources and documentation of risk, designed with a specific group/zone 
visualization intent, rather than to reporting or specific display requirements. This model, layered on a source-
agnostic data warehouse with proficient master patient index, facilitated the identification and documentation of 
thousands of documentation and care gaps among a sample population, at little marginal cost to providers. We will 
also show the power of interactive and animated data exploration, and will pose a challenge for visualization 
experts in this climate to advance the entire healthcare ecosystem to a new standard for unearthing and transferring 
insights, one in which data models are designed not by what is at hand but rather by what can be learned. 

Visualization 

The HCC Risk Browser (Figure 1) came out of a need by healthcare payers and provider networks to better 
understand member-patient risk in the context of the CMS HCC Risk Adjustment Algorithm.  

While CMS makes use of information reported by 
way of the Risk Adjustment Processing System 
(RAPS), highly reduced claims-style records 
submitted by the payer, anyone wishing to 
understand or validate these results must seek out a 
number of sources, including: 

(1) Claims from all patient encounters 

(2) EHR information, including encounters, 
vitals, progress notes, medications, and 
lab orders 

(3) CMS RAPS, model output, and member 
reports.  

By integrating these data sources, and searching 
out both retrospective opportunities for risk 
adjustments as well as prospective opportunities 
for proactive interventions, the HCC Risk Browser 
visualizes patient chronic conditions in an 
interactive and actionable format. Aggregate 
results in total and by HCC code or category are 
presented clearly, and with easy interactivity by the 
user (Figure 1, top). 

To better visualize opportunities on a patient-by-
patient level, patients are represented in a modified 
pareto-figure as discs in order of total identified 
risk of chronic condition (Figure 1, bottom; and 
Figure 2). The discs are colored by the opportunity 
group represented in order to the user to 
specifically focus on any of (a) the patient with the 
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greatest chronic condition risk, (b) a specific opportunity or intervention group represented within the disc, or (c) the 
patients assigned to a specific PCP.  

By selecting a single individual, the user is presented with a list of opportunities and interventions identified within 
that individual (Figure 3). In the hands of a plan risk manager, this information can dramatically improve efficiency 
of risk reporting and capture efforts. In the hands of a clinician, this information offers a shorthand for questions 
about current or historical health conditions and wellness practices. In the hands of a care coordinator, this 
information can facilitate patient outreach for proactive condition management and appropriate preventative care.  

Finally, no solution is complete without transparency and 
verifiability. By selecting a specific HCC category, the user 
has access to an “evidence table”, which lists the various 
references within all available data sources (claims, clinical, 
and RAPS) to substantiate the risk determination (Figure 4). 
By stepping through this information, the user can act 
immediately on references, actions that may include 
requesting immediate recognition and reimbursement from 
CMS, seeking out potentially outdated information for 
update, identifying providers or specialists for additional 
documentation, and contacting patients overdue for proper 
treatment of a chronic condition. 

Results 

An initial small-scale pilot was run on a large payer 
organization in the Northwest United States, and a full pilot 
was then run on over 3,300 member-patients at a managed 
care organization in the Southeast United States. Based on 
initial results from these trials, retrospective analysis 
identified hundreds of unreported risk conditions, stemming 

Table 1. Organization of Risk Identification and Intervention Opportunities 
 

X

R

1

2

Already Recorded in MOR
CMS’ Model Output Report already reflects the HCC 
group

Pending RAPS Transmission
CMS RAPS Return File reflects encounters in the HCC 
group

Claim Issued, no MOR/RAPs
A claim exists for the encounter, but no record exists 
in RAPS Return Files
This group may be recovered by identifying and 
(re-) submitting the matching claim.

Signed Progress Note
A signed progress note contains an assessment in 
the HCC group
Documentation of the encounter makes recovery 
of this group straightforward

3

4

5

6

Face-to-Face Visit w/ Assessment
A record of an encounter exists in the EHR with a 
relevant diagnoses, but not incorporated to a signed 
progress note.  
Provider can close visit and submit claim.

Medications or Prescriptions
A pharmacy claim or medication linked to an 
encounter indicates the presence of a condition
This group may indicate a care gap or 
documentation disconnect

Active Problems on Problem List
An entry in the Problem List may indicate the 
presence of a ongoing or chronic condition
Presence in this group may reveal care gaps 
and/or documentation disconnect

Claim Issued w/o E&M Code
Claims issued in the current year for which there is 
no face-to-face office-visit encounter
This group may reveal care gaps and ongoing 
poor maintenance of chronic conditions

7 Historical Claim Issued
A condition was signaled by a claim or CMS report in 
a previous year
The historical presence of conditions may reveal 
care gaps in the measurement year and 
opportunities for improved care in the present

 

 
Figure 2. Patient Browser view presents patients in 
order of risk identified, color-coded to opportunity 
and intervention group (See Figure 1 for color key). 
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from to claims reporting errors, specialist documentation gaps, and failure to link assessments within EHRs. The 
resulting risk adjustments by CMS potentially represent between $100 and $200 per member per year in retroactive 
reimbursement. 

Furthermore, prospective analysis of those 3,300 member-patients revealed thousands of potential intervention 
opportunities to cover documentation or care gaps. These activities not only create a more accurate representation of 
the overall risk of an organization’s member-patient population. They also improve healthcare for the entire 
community by directly identifying potential care gaps for intervention, as well as identifying processes that could 
contribute to care and documentation gaps in the future. 

Conclusion 

Peering into the CMS HCC Risk Adjustment algorithm represents a challenge of multi-dimensional, heterogeneous 
datasets with mixed availability and visibility. By addressing this challenge with a data model designed around 
effective visualization, and with the aid of intuitive multi-dimensional, interactive data navigation tools, we have 
developed a technique that provides depth, breadth, verifiability, and functionality of insight into a complex clinical 
and healthcare challenge. 

References 

1. Simon MA, Baum Z, Lebel L, 
Harvey L, Gillis B. Mind the Gap: 
Identifying critical data quality gaps 
to unlock population health 
management. J. Healthcare Inf. 
Management. 2014; 28(2): 28-33. 

 
 
 

 
Figure 3. Overview of risk opportunities and interventions identified for a specific patient, by category and group. 

 
Figure 4. Evidence table, presenting all references related to a specific 
risk opportunity or intervention. 
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Understanding Outcome Measures of Patients Diagnosed with mild TBI - A Visual 
Analytics Approach 

Ryan Diehl, Niki Noprapa, and Jesus J Caban 
 

National Intrepid Center of Excellence (NICoE),  
Walter Reed National Military Medical Center, Bethesda, MD 

 
Assessing, analyzing, and understanding short- and the long-term clinical outcomes of patients that have 
been diagnosed with mild Traumatic Brain Injury (mTBI) is a challenging tasks.  There are a number of 
potential metrics, surveys, and clinical elements that could be used to measure progression and response 
to treatment.  Unfortunately the large number of potential variables that can be used to assess progression 
makes it very challenging for providers, clinical staff, and researchers to understand the results of brain 
injuries and the effects of different treatment modalities.  We present a flexible and easy-to-use visual 
analytics software application that can be used by either researchers or clinicians to quickly analyze 
outcomes data.  The clinical dashboard provides the user with the ability to compare and contrast multiple 
outcome surveys at the same time. Users can select any combination patient tests/subtests, year/month, 
branch, age group, validity, PTSD diagnosis, and number of TBIs and compare the results of different 
cohorts side-by-side.  The system allows for tending of the data as well as the analysis of each patient 
individually.  
 

 
Side-by-side comparison of different cohorts. 

 
Patient specific outcomes data can be display to 

better understand individual symptoms 

 
Trending of the data is supported to better analyze the overall response to treatment.   
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Visual'Insight'for'Better'Decision:'Revealing'Meaningful'Values'of'Visual'Analytics'in'
Healthcare'Dashboards'

'
Yair'G.'Rajwan,'DSc,'MS,'Visual'Science'Informatics'

'
!

Accurate! review! of! a! patient’s! chief! complaint,! history! of! present! illness,! and! medical! history! is! a! critical!
antecedent! to! a!medical! diagnosis! and! the!development!of! a! treatment!plan.! Electronic!medical! systems! can!
capture! and! display! a! dashboard! of! a! patient’s! medical! history! items! on! a! chronological! timeline.! However,!
temporal! visualization,! in! healthcare! dashboards,! mostly! focuses! on! displaying! objective! and! quantitative!
information!that!a!healthcare!practitioner!measures!from!a!patient!or!coded!results!from!laboratory!tests!and!
diagnostics.! While! a! patient’s! chief! compliant! and! history! of! present! illness! are! subjective! components! and!
captured!in!a!narrative!form.!!

Given! the! freeBtext! form! of! clinical! notes,! text! visualization! can! be! explored! in! displaying! subjective! and!
qualitative!information!that!a!patient!communicates!to!a!healthcare!practitioner!such!as!chief!complaint,!history!
of! present! illness,! medical! history,! family! history,! as! well! as! social! history.! At! the! same! time,! the! text!
visualization!must!be!combined!with!temporal!visualization!to!depict!a!progression!of!clinical!notes!sequence.!!!!!

This! demonstration! illustrates! a! visual! text! analytics! system! to! support! a! hybrid! of! text! visualization! and!
temporal!visualization!and!applies!this!prototype!to!a!single!patient’s!clinical!notes.!

To!be!used!at!the!pointBofBcare,!the!hybrid!visualization!shows!a!single!patient’s!current!incidents!and!compares!
them! to! past! events.! The! events! comparison! includes! views! of! new,! vanished,! clustered! and! singular! sign,!
symptom,!diagnostic,!test,!or!treatment.!!

!

Biographical'Sketch!

Yair'G.'Rajwan,'DSc!

Dr.!Yair!Rajwan!is!the!founder!and!director!of!Visual!Science!Informatics,!a!Virginia!firm!that!helps!organizations!
analyze! and! visualize! data! and! text! to! provide! insight! and! improve! engagement.! He! applies! open! source!
platforms! to! harmonize! organizations'! datasets! with! open! data,! analyze! data! and! text,! design! information!
visualization,! and! develop! visual! analytics! interfaces.! He! is! the! founder! of! VisualMatics! B! Visual! Science!
Informatics,! a! social! network! group! that! connects! healthcare! practitioners,! visual! analytics! professionals,! and!
information!visualization!researchers!to!collaborate!on!visual!analytics!proposals!and!grants.!His!enthusiasm!to!
make! a! different! in! healthcare! systems! started! in! 2009! by! designing! and! evaluating! patientBoriented!
visualization!to!improve!healthcare!outcomes.!His!research!was!published!as!part!of!his!postdoctoral!fellowship!
of! the! National! Library! of! Medicine! at! the! Division! of! Health! Sciences! Informatics,! Johns! Hopkins! University!
School!of!Medicine.!His!published!contribution!was!visualizing!infections!outcome!data!to!health!care!consumers!
and! practitioners! for! decision!making.! Its! impact,! at! the!Maryland! Center! for! Hospital! Services,! was! reduced!
infections!in!eight!hospitals.!His!peerBreview!publications,!conference!presentations,!and!educational!materials!
are!listed!at!the!Visual!Science!Informatics!Forum.!
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An#Interactive#Visualization#System#with#a#Grammar#Induction#Layer#for#Learning#and#
Generating#Suggestions#from#Complex#Clinical#Datasets#

Filip%Dabek1,%Jesus%J%Caban2%and%Tim%Oates1%

1University%of%Maryland,%UMBC%

2National%Intrepid%Center%of%Excellence%(NICoE),%Walter%Reed%Bethesda%

Assessing,%exploring,%and%analyzing%large%amount%of%heterogeneous%clinical%data%are%some%of%the%key%challenges%
faced%by%researchers%and%clinicians%interested%in%identifying%complex%clinical%patterns.%%Flexible%visualization%
systems%capable%of%performing%individual%statistical%analysis%while%guiding%the%user%towards%patterns%in%a%data%set%
have%the%potential%of%impacting%the%way%clinical%datasets%are%analyzed.%We%introduce%VisXplore%QQ%a%clinical%data%
visualization%system%that%has%been%designed%to%perform%a%wide%range%of%analysis%techniques%on%clinical%data,%
along%with%a%machine%learning%component%aimed%at%assisting%users%in%obtaining%answers%to%their%clinical%
questions%through%the%use%of%interaction%suggestions.%%The%visualization%system%captures%and%aggregates%
interaction%data%from%users%and%uses%grammar%induction%along%with%a%set%of%preQdefined%rules%to%identify%a%lost%
user%and%keep%them%on%track%in%obtaining%an%answer%from%a%visualization.%%The%system%has%been%tested%with%
different%clinical%datasets,%while%our%suggestions%have%been%tested%and%shown%to%produce%equal%or%significantly%
better%performance%in%users%91.67%%of%the%time,%concluding%that%we%are%able%to%guide%a%user%along%the%visual%
analytic%process.%

%

%

User#Interface#for#our#Visualization#System,#VisXplore#

%

2014 Workshop on Visual Analytics in Healthcare



%
User#Interaction#Graph#of#6#Users#

%
Compressed#User#Interaction#Graph#

%

%

User#Being#Presented#with#a#Suggestion#Generated#from#the#Compressed#Graph#
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