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Abstract—we present an interactive visual interface for 
medication reconciliation intended to provide cognitive support 
for VA physicians in the context of home health. We describe the 
iterative design process, the software prototype implementation 
and present insights from our user study. In particular, we 
provide a detailed discussions of key design decisions, the 
principles behind them and their implications. Though home 
health setting introduces some unique challenges, we believe that 
the reasoning behind our design decisions and the insights gained 
through this work can benefit the design of future medication 
reconciliation tools for use in other settings. 
 

Index Terms—Medication Reconciliation, Visualization, 
Design, Home Health, Transitional Care.  

I. INTRODUCTION 
Patients transitioning from one healthcare setting to another 

are at high risk for adverse events and readmission [1][2][3]. 
One cause of these adverse events  is a failure to correctly 
reconcile medications across multiple plans of care [4][5][6]. 
Medication reconciliation is a complex task that is time 
consuming, laborious and prone to human errors. A provider 
engaged in the process of medication reconciliation must 
detect differences between medication lists, determine the 
reasons for the discrepancies, decide which prescription is 
most appropriate for the patient, and finally change medication 
orders and update the patient records [7]. Additional 
complications arise because the medication lists are collected 
from disparate sources, are often long and complex, and the 
differences between them are often subtle. An efficient and 
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accurate medication reconciliation process has become an 
important patient safety concern [8]. 

In this project we developed a system for medication 
reconciliation performed by a provider whose patient was 
refereed for home healthcare. The process of medication 
reconciliation in home healthcare is different from other 
settings in which the provider works directly with the patient. 
In a home health (HH) setting, a home health nurse visits the 
patient’s home and reports about medications found there and 
patient adherence to the prescribed regimen to the certifying 
physician. The communication, mediated by the nurse, 
between the referring provider and the patient is therefore 
indirect and asynchronous and in some cases requires several 
iterations in order to verify information and correct the patient 
medications [8][9]. 

To date, technology based solutions to medication 
reconciliation have been mostly directed towards hospital 
settings and automated systems that streamline the process by 
gathering medication lists from disparate sources and 
identifying matches and discrepancies between them [2][5][6]. 
In contrast, very little has been published on interactive 
visualization systems that focus on the clinical decision- 
making during the discrepancy resolution phase.  

In this paper, we present an interactive visual interface for 
medication reconciliation for physicians treating patients 
receiving home health services that aims to provide cognitive 
support for both discrepancy detection and resolution. We 
describe the iterative design process, the software prototype 
implementation and present insights from our user study [11].  

The main contributions of this work are in the approach that 
we codify as “my list vs. the other list”, the detailed 
discussions of key design decisions, the principles behind 
them and their implications. We note that while the home 
health setting introduces unique challenges, the overall design 
and the reasoning behind our design decisions are applicable 
in other settings. 

II. HOME HEALTH USE CASE 
In this work we focus on the use case of medication 

reconciliation specific to HH care. After a patient is 
discharged from a hospital, a referral for HH is generated by a 
physician or their designee, signed electronically by the 
physician and then sent to a HH agency. If the referral 
includes skilled nursing care, a registered nurse is sent to the 

My List vs. the Other List:  
The Design of an Interactive Visual Interface for 
Medication Reconciliation 

Y. Livnat, B. S. Gibson, H. S. Kramer, A. A. Brody, I. Thraen, R. Rupper  
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patient’s home to conduct an initial assessment, develop a plan 
of care and initiate the plan of care. During the initial 
assessment the nurse reviews the medications found at the 
home and notes any differences between the patient reported 
medication regimen and the one listed on the referral. The 
home health plan of care is then reported in paper form (aka 
CMS-485) back to the referring providers for reconciliation 
and approval. 

III. RELATED WORK 
Medication errors and adverse events related to medications 

are increasingly recognized as significant causes of harm to 
patients [2][5][6] and that an accurate medication 
reconciliation is critical for  patient safety . The Joint 
Commission on Accreditation of Healthcare Organizations 
(JCAHO) has identified [12] five core steps in medication 
reconciliation: gather information about current medications, 
develop a list of medications to be prescribed, identify 
discrepancies, make clinical decisions to resolve 
discrepancies, and communicate the new list. Efforts have 
been mostly focused on automating the gathering, 
identification and communication steps but there is very little 
published work on visual interfaces to support the clinical 
decision making process[13]. 

One example of a visual interface to support the medication 
review is the Pre-Admission Medication List (PAML)[14].  
The interface compiles all medications into a single list and 
provides a centralized view of all currently available 
information about the medications. The system focuses on 
providing comprehensive information but it does not directly 
provide cognitive support in the sense of contrasting and 
highlighting discrepancies or facilitating appropriate actions 
based on the decisions the user makes.  

Recently, Plaisant et al. [15], [16] presented TwinList, a 
user interface for reconciling two medication lists in a hospital 
setting that aims directly at facilitating the decision making 
process. The main ideas behind TwinList are the separation of 
the two medication lists (A and B) into five lists representing 
different types of discrepancies, the spatial layout of these lists 
in the display, and the use of a multi-step animation to 
illustrate the creation of the discrepancy lists. The five 
discrepancy lists in TwinList represent: 1) exact match, 2) 
medications in list A that are similar to but do not have an 

exact match in B, 3) medications in list B similar to A but not 
exact, 4) medications unique to A, and 5) medication unique 
to B. The five lists characterize the possible relationships 
between the two medication lists. In addition, animation plays 
a key role in TwinList and the authors suggest it may help 
users learn and understand the layout. 

The TwinList visualization of the five lists pose a few 
challenges. First, the user must contend with comprehending 
and contrasting five lists rather than only two. Second, the 
exact-match list (medications with no discrepancies) is placed 
at the center of the display in order to maintain a symmetric 
relation between the five lists. In essence, the list with the least 
important information for the purpose of the medication 
reconciliation is placed at the focus point of the user. Third, 
this design choice places the two similar-but-not-exact lists (2 
and 3) on opposite sides of the exact-match list even though 
they represent the hardest to detect, discrepancies, which 
should be carefully compared and contrasted item by item. 
Finally, despite the prominent emphasis the authors give to the 
use of animation, they report that users had to view the 
animation multiple times in order to comprehend the spatial 
layout. One reason for the users’ confusion might be that too 
many items are moving on the screen at the same time. Rather 
than helping users in the reconciliation process, the animation 
may actually distract them and shift their attention away from 
it. 

IV. DESIGN OBJECTIVES 
To understand functional requirements and determine 

design objectives, we conducted group and individual 
interviews with Veterans Health Administration (VA), and 
Home Health (HH) nurses. We also observed providers as 
they reviewed HH plans of care. We noted that in complex 
cases involving high-risk discrepancies, the reconciliation 
process could spread over time and may include multiple 
phone calls and /or written communication between the 
physician’s team and the HH nurse before a final 
reconciliation was achieved.  

Providers stated that the reconciliation process is often 
tedious with potential for failure to detect or correct 
discrepancies. They expressed concerns regarding the validity 
of the data they receive from HH and the value of reconciling 
the medication lists on the CMS-485 paper form (since similar 
discrepancies would often reappear in subsequent 
communication with HH). This finding suggests that referring 
providers and HH nurses have different mental models of the 
meaning of each medication list and this consideration was 
brought into our design. Provider’s main requests were for an 
electronic system, integrated with the Electronic Health 
Record (EHR) that would ensure accurate information, ease 
the comparison of medication lists, and allow them to take 
actions on each discrepancy while automatically updating the 
Electronic Health Record with the results of the reconciliation. 

V. DESIGN AND VISUAL CONCEPTS 
Based on the functional requirements and design objectives 

 
Figure 1 A portion of a CMS-485 form. The home health medications 
are listed in box 10 on the right. 
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developed through the interviews and observations we 
constructed paper prototypes of the user interface.  We 
continued to rely on principles of user-centered design 
[17][18] as we shared the paper prototypes with a small 
sample of VA physicians to iteratively refine and expand the 
design. The iterative refinement of the visual design and 
functionality continued throughout the development of the 
software prototype by ad-hoc testing with some of the same 
physicians who had interacted with the paper prototypes as 
well as physicians who were naïve to the initial design.  Here 
we detail key design concepts and decisions, and elaborate on 
the reasons behind these decisions. 

A. Separation of concerns  
The role of a visual interface is to facilitate the user 

comprehension, decision making and action [19]. In this work, 
we focused on the design of medication reconciliation tool that 
use medication lists that have already been matched using an 
independent external pre-process. The separation between the 
matching algorithm and the visualization ensures that our 
system can be used in other settings that may impose other 
matching requirements. For the purpose of testing our 
software prototype (Section VII), we pre-processed the 
medications lists using a system developed by our 
collaborators at MITRE[20]. 

B. First do no harm.  
 Currently, when physicians work with the paper home 

health plans of care they can scan the list of medications very 
quickly. At times, physicians ignore medication discrepancies 
that they deem insignificant (e.g., over the counter medication 
or nutritional supplements) and may not update the VA 
records or order to discontinue use.  

Although the paper-based reconciliation process is often 
inaccurate at time, it is nevertheless fast when there are few 
discrepancies or when none of the discrepancies seem to pose 
a significant risk. Based on this analysis we developed a first 
do not harm approach throughout the design process to ensure 
that handling the common case remains simple and fast with 
minimal requirements from the user. Complex situations are 
infrequent and by definition should require close attention and 
careful assessment by the physician. It is thus acceptable that 
handling complex situations will take longer time and require 
more complex interactions. 

C. “Above all else show the data” 
In his book “The Visual Display of Quantitative Data” [21], 

Edward Tufte introduces the concepts of Data-Ink and Data-
Ink Ratio saying “A large share of ink on a graphic should 
represent data-information”. Tufte codify them as the Laws of 
Data-Ink: Above all else show the data; Maximize the data-ink 
ratio; Erase non-data-ink; Erase redundant data-ink; and 
Revise and edit. 

We employ the Laws of Data-Ink throughout the design to 
develop clear and concise visualization by identifying and 
removing redundant information (Section V.D), condensing 
annotations (Section V.D.4), reducing extraneous information 

(Section V.D.4), and designing user interactions that enable 
users to directly interact with visual items without the need for 
buttons and labels (Section VI.C). 

D. My List vs. the Other List 
Medication reconciliation has been defined by CMS[22] as 

“The process of identifying the most accurate list of all 
medications that the patient is taking […] by comparing the 
medical record to an external list of medications obtained 
from a patient, hospital, or other provider” (our emphasize). 
Note that from the perspective of the physician there is a clear 
distinction between the two medication lists based on the 
physician’s ownership of one of the lists. This distinction is 
particularly prominent in our setting because physicians are 
often unclear regarding the source and credibility of data in 
the medication list reported by HH, as we describe in 
Section IV. 

The main theme of our design is centered on ownership and 
trust distinctions between the two lists, which we codify by the 
‘my list vs. the other list’ concept. We designed the visual 
interface specifically for the owner of the first medication list 
and use that list as the anchor for the rest of the display. For 
the ‘other list’ we only present its discrepancies with respect 
to the owner list as shown in Figure 2. 
 
1) Discrepancies 

We identify four types of potential discrepancies, 
• No discrepancy: This case can be further divided into 

exact and equivalent matches. 
• Prescription discrepancy: discrepancies such as name, 

form, dose and frequency. 
• Missing at home: indicate the omission of medication in 

accordance with our notion that the owner’s list (VA in 
this case) is the definitive list for the patient. 

• Unexpected: medications that are not on the owner’s list. 
we further distinguish between three subcases: 
Discontinued and Expired indicating medications 
previously on the actively VA medication list, and 
Unknown indicating a medication for which no previous 
VA information is available. 

 
There are various ways of ordering the medications, such as 

alphabetically or based on conditions. Condition based 

 
Figure 2 My List vs. the Other List: Two initial paper mockups, Left: the 
original two medication lists. Right: Depicting discrepancies relative to 
the physician list.  
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ordering can be beneficial in some setting although a 
medication can be associated with multiple conditions. 
Unfortunately, such information is not recorded in our setting. 
With no good contextual information to help in the ordering, 
we elected to order the medication based on the type of 
discrepancy and the display order in the current VA EHR (and 
alphabetically within each group). In particular, we use the 
following group ordering, 
1. Prescription discrepancy:  we presumed that these 

discrepancies (such as differences in dose and/or 
frequency) are the hardest to detect because they require 
close examination of differences between two text strings.  

2. Missing at home: omission of a prescribed medication 
indicates a departure from the physician’s medication 
regime. 

3. Discontinued: may indicate erroneous use of previously 
prescribed medications or may only reflect the need to 
dispose of them. 

4. Expired: may suggest the need to renew the prescription, 
the need for proper disposal, or erroneous use. 

5. Unknown medications at home. These could represent 
medications prescribed by other physicians or over the 
counter medications. 

6. No discrepancy: these medications are listed for 
completeness. When considering whether a given 
medication is appropriate the MD needs to consider the 
entire list of medications, not just those with 
discrepancies. They are listed last in our interface so that 
they user can focus on medications with discrepancies 
first.  
 

2) Situational Awareness 
During a medication reconciliation session, a physician 

needs to maintain a clear mental picture of the overall 
situation and the progress in the reconciliation process. This 
may include how many discrepancies exist, which ones have 
been addressed, whether they represent omission by a VA 
provider or represent medications prescribed by a non-VA 
physician (the actions for these two situations would be 
different). 

The design outlined above supports the physician’s 
situational awareness by clearly indicating where there are 
discrepancies and highlighting specific indicator mismatches. 
The vertical representation of the two lists enables the 
physician to quickly scan the display and maintain an updated 
and accurate mental picture of their progress in the 
reconciliation process. Additional visual cues to enhance  
situational awareness [23] are described in the following 
sections. 
 
3) Handling unknown medications 

Our initial approach was to separate medications found at 
home but not on the VA list (“unknown medications”) from 
medications prescribed by a VA provider and treat them 
differently because they are not part of the owner’s list (VA). 
A few physicians worried about polluting the VA list, which 

they considered the gold standard, with unimportant or 
insignificant supplements and over the counter medications. 
Upon further discussions with providers, we reached a 
consensus that in order to maintain consistency all the 
medications should be presented and dealt with in a single 
unified list. 
 
4) Annotated list 

In order to minimize information overload and maximize 
data to ink ratio, we initially indicated no discrepancy by 
leaving the entry in the discrepancy list empty.  This decision 
was based on the principle that the discrepancy list should 
only be used to indicate that there is a discrepancy and 
describe it in simple terms. During the iterative design 
process, we found that physicians felt uncomfortable with the 
empty space concept and often wondered if that meant 
information was missing. In fact, some physicians expressed 
complete lack of trust in automated systems and wanted to see 
the exact wording of the prescription in order to confirm for 
themselves that there was no discrepancy, a demand that 
undermines the concept of providing cognitive support. To 
address these concerns, we introduced a checkmark to 
explicitly affirm no discrepancy was found.  

Physicians were also uncomfortable with the use of icons to 
indicate that a medication was missing from the home. We 
thus annotated a missing medication entry with a label 
‘missing’ though we distinguish it from other medications by 
using italics and slightly faded the label to the background by 
using light gray color as shown in Figure 3. 

It is  possible that the owner of a medication list  might have 
additional relevant information about items on that list, which 
can be used to further annotate the discrepancy list (Figure 3). 
Such information might include patient adherence, patient 
sensitivity, prescription status (expired or discontinued), or 
some previous communication with HH. One must be careful 
though not to introduce too much extraneous information that 
may clutter the display. We experimented with a simple paper 
clip icon to indicate that additional information is available but 
later opted to remove it for the sake of clarify and to reduce 
cognitive load. On the other hand, we found out that indicators 
such as ‘stopped’ and ‘expired’ were very helpful to 
physicians as they sought to understand the implication of 
finding a medication at home that is not on the VA list. 
Because these are annotations and not the medications 
themselves, we initially presented them to the right of the 
discrepancies. This caused the display to spread too wide 
forcing user to scan back and forth horizontally and thus 
reduce the effectiveness of the vertical scan (Section V.D.2). 
Our solution, shown in Figure 4, is to inline some of the 
annotations inside the owner (VA) list using non-obtrusive 
faded labels similar to the ‘missing’ label. The inline 
annotations approach reinstates the vertical scan and 
emphasizes that these annotations represent the owner’s (VA) 
own knowledge rather than an external source such as a verbal 
description by the patient (note that the clip was not in lined).  
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E. On the use of animation 
The physician’s main goal is to address any existing 

discrepancies and it’s the system goal to effectively present 
discrepancies to the physician. TwinList presents the user with 
the original two medication lists and then uses animation to 
show how the two lists are rearranged into five different lists 
based on the types of discrepancies. Our approach is to forgo 
this initial phase and immediately present the user with a 
concise and actionable representation of the discrepancies that 
need to be addressed. While the use of animations can be 
informative, animations impose time delays which are 
incongruent with our approach of making the average case 
fast.  

VI. DESCRIPTIVE VS. DECLARATIVE ORDERS 
The design outlined above focuses on providing a clear and 

concise presentation of the discrepancies in order to improve 
situational awareness. An effective system must also facilitate 
the analytical reasoning process by supporting the analytical 
discourse between users and their information. In the 
following, we analyze the set of potential orders a physician 
may issue and show how we arrange them into four categories. 
We describe both declarative and descriptive based 
approaches for designing efficient and consistent interactions 
with the system.  

A. Contextual orders  
Consider a case where a medication was found at the patient 

home and the physician does not see a reason to stop or 
change its use. If this is a new medication than one potential 
order might be “Add to VA list”. In a case of a known 
medication but with a different indication, the order might be 
“Update VA record”. Similarly, if this is an expired VA 
prescription then a relevant order might be “Renew 
prescription.” There are clear differences between these 

orders and each may require different actions yet they have a 
similar semantic, namely “Accept the Home Health finding 
and update the VA medication list”. Moreover, these orders 
are mutually exclusive with regard to a particular discrepancy 
such that only one is viable. 

Presenting a list of all possible orders, each with its own 
unique wording, will result in a cluttered and cumbersome 
interface. Even if we mark as disabled the orders that are not 
suitable for each discrepancy, it will force the physician to 
linearly scan each and every potential order and comprehend 
the differences between the orders before making a decision. 
Rather than empowering the physician, the system would only 
impose additional cognitive load and would slow the decision 
making process.  

After reviewing all potential orders and their semantics, we 
identified four semantic groups such that only one order from 
each group is viable for each discrepancy. The four groups and 
their semantics are, 

Enforce VA: Inform Home Health to request the patient 
adhere to the original VA order. This may imply changing or 
replacing the medication at the patient home or ensuring the 
patient does not take the medication. 

Accept HH: The current medication (or lack thereof) at the 
patient home is acceptable. The VA records should be updated 
accordingly (i.e., add to, delete from, or edit dose or schedule 
in the VA medication list). 

Clarify: This is a special case that may arise in a Home 
Health setting. In some cases, the discrepancies may require 
additional clarification. For example, if the VA’s medication 
list notes that an outside physician has prescribed the patients 
a medication at a given dose and frequency (e.g. simvastatin 
40mg once a day) but the home health list has different 
information (e.g. simvastatin 20mg once a day) the physician 
will likely want to ask the reason for this discrepancy such as 
‘does the patient take it differently than prescribed?’ or “did 
the prescribing MD change the prescription?”. Typically, the 

 
Figure 3 Annotating discrepancies: Using checkmarks to explicitly 
indicate no discrepancy and a ‘missing’ label to indicate medication not 
found at home. Other annotations such as ‘stopped’, and ‘available notes’ 
(paper clip) are placed to the right of the discrepancy. 
 

 
Figure 4 Final paper mockup. Using inline annotations to provide 
contextual information and preserve fast vertical scanning. Green 
background represent user decisions as described in the 
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physician will add a message to the home health nurse, asking 
for additional information or clarification. 

No Action: The physician deems the discrepancy 
inconsequential and does not want to update the current order 
in the VA records. 

B. Descriptive Interface 
Traditional interfaces are based on descriptive actions 

which explicitly describe what should be done such as ‘renew 
medication’ or ‘update VA records’. We use the grouping we 
define above to create a simple interface in each row 
consisting of four radio buttons arranged in a two by two box 
as shown in Figure 5. To maintain consistency, the two radio 
buttons on the left refer to the two most often used groups 
Enforce VA (top) and Accept HH (bottom). The radio buttons 
on the right represent the less frequent scenarios Clarify and 
No Action. We chose to place the Enforce VA and Accept HH 
vertically in order to minimize mouse movements and fit with 
the overall flow of scanning the medications vertically from 
top to bottom. Although the radio buttons arrangement is fixed 
in all the rows, the labels do reflect the specific appropriate 
order for the discrepancy in each row. For example, if the HH 
list contained a discontinued med the labels change to ‘Do not 
use’, and ‘Renew’.   

A reconciliation process is not necessarily a linear process 
and the physician may temporarily skip some discrepancies in 
order to gain a better holistic view of all the discrepancies. We 
add a background color to each choice the physician has made 
in order to help the physician maintain an overall notion of 
which discrepancies he/she has already addressed and which 
discrepancies still stand during the reconciliation process. A 
selected choice for ‘Enforce VA’ and ‘Accept HH’ is marked 
by a green background, a ‘Clarify’ is marked with yellow and 
‘No Action’ in blue. 

C. Declarative Interface 
In contrast to the descriptive actions, a declarative action 

describes what the results should be and leaves the exact 
details unspecified, such as ‘the VA medication is the correct 
one’. In this context, the four groups we identified above form 
a set of four declarative orders, VA, HH, No Action and 
Clarify. We can map the first three to direct interactions with 
the display without the need for an explicit interface such as 

the radio buttons. Specifically, the physician selects (clicks 
on) an item in the VA (or HH) column to declare this the 
desired outcome. A click on a selected item unselects it and 
removes the order resulting in No Action. The physician can 
also directly switch from a VA order to a HH order and vice 
versa without the need to go through an intermediate No 
Action by selecting the desired radio button directly. We note 
that these declarative orders are unambiguous and translate to 
exactly one descriptive action based on the particular 
discrepancy. A selected item is marked with a green 
background (Figure 6).  

A Clarify order is a statement that neither option is 
appropriate in the current context. It is a very special case 
because it also means the physician cannot sign the CMS485 
form until the issue is resolved. Because of this unique case, 
we opted to use a dedicated button to mark a discrepancy as 
Clarify and mark both entries with a yellow background.  

The declarative approach facilitates much faster and simpler 
interactions. The physicians view and interact directly with the 
medication and the discrepancy text rather than having to shift 
the attention to the radio buttons on the right, find and select 
the appropriate one and then shift attention back to the lists. 

Though we believe this is faster and simpler interaction, we 
acknowledge that it is a departure from traditional interfaces. 
For this reason, we implemented both approaches in our 
prototype to look at their usage during the user study. We note 
that the TwinList interface can be regarded as a declarative 
interface although the semantic is somewhat different and the 
authors do not present it as such and do not discuss the 
implications. 

VII. VISUALIZATION PROTOTYPE 
We implemented our design as a web based medication 
reconciliation software prototype shown in Figure 7. The 
software prototype addresses additional requirements beyond 
the key design issues described above. In particular, the 

 
Figure 5 In a Descriptive Interface the physician explicitly states the 
action that should be taken. (portion of prototype screenshot). 

 

 
Figure 6 Declarative Interface (left two columns). A physician indicates 
the desired outcome by selecting (clicking) the VA or HH medication or 
discrepancy. In general, the clarify action, which is unique for the HH 
setting, requires an additional clarify button. (prototype screenshot) 
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interface enables physicians to add notes with additional 
instructions or questions to home health. The prototype also 
enables users to sort the medications alphabetically, based on 
the group each orders belongs to, or manually rearrange the 
rows by dragging them up or down the list. Additional screens 
provide the physician with a concise summary of the orders 
and a final signature screen, Figure 8, that depict the final 
medication list and orders the physician can sign.  

VIII. USER STUDY 
We evaluated the effectiveness of our system and reported 

on that study and findings in another paper [11]; In the 
following, we summarize the key findings for completeness. 
To conduct the user study, we extended the software prototype 
and incorporated (limited) additional information screens that 
simulated information physicians have access to on a regular 
VA system. We employed repeated measures ANOVA to test 
the hypotheses that the system: 1) Improves accuracy by 
reducing the number of unaddressed medication discrepancies, 
2) Improves efficiency by reducing the reconciliation time, 3) 
has good perceived usability.  

Nineteen physicians with experience in managing home 
health referrals were recruited to participate in this within-
subjects experiment. Participants completed medication 
reconciliation for one fixed ‘warm up’ and two randomly 
chosen clinical cases in each of two conditions. The first 
condition (paper-based) simulated current practice – 
reconciling medication discrepancies between a paper plan of 
care (CMS-485) and a simulated Electronic Health Record 
(EHR). For the second condition (electronic) participants used 
our medication reconciliation module, which we integrated 
into the simulated EHR.  

The results support the improved accuracy hypothesis. 
Participants left more discrepancies unaddressed in the paper-

based condition than the electronic condition, p < 0.0001 
(Paper Mean = 1.55, SD = 1.20; Electronic Mean = 0.45, SD = 
0.65). Our hypothesis that users would perceive good usability 
compared to the traditional CMS486 paper form is supported. 
Participants reported improved ability to detect and correct 
discrepancies with increased confidence in the results. The 
standard SUS score was 86.5 which correlates to an 
“excellent” rating [24][25]. The electronic process was the 
preferred process and was overwhelmingly well received.  

Contrary to our efficiency hypothesis, participants took the 
same amount of time to complete cases in the two conditions. 
Based on participant comments and our post-hoc analysis of 
user’s exploration of the simulated record, we hypothesized 
that an unintended (but highly beneficial) consequence of the 
electronic system was that participants were spending more 

 
Figure 7 Screenshot of the final visual interface. In order to provide a contextual medical history for the user study, we developed an additional minimal 
simulated Electronic Health Records (EHR) that mimic the Computerized Patient Record System (CPRS) VA providers use regularly in their clinical 
practice (accessed via the tabs at the top).  

 
Figure 8 A sign orders screen depicting a concise summary of the doctor 
orders. 
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time foraging in the simulated EHR for information related to 
the appropriateness of medications. This post-hoc hypothesis 
is supported by examining the number of times participants 
switched between display panels (i.e., tab switches) in the 
simulated EHR during the paper-based vs. electronic 
scenarios. This need for a simple and direct access to the 
patient record during medication reconciliation is consistent 
with previous studies that noted providers’ desire for 
interoperability between medication reconciliation tools and 
the patient records [26]. 

IX. CONCLUSION 
In this paper, we present the design of an interactive visual 

interface for medication reconciliation. Our interface is 
intended to provide cognitive support for VA physicians 
treating patients receiving home health services. The two 
mechanisms by which our tool supports users is by making 
differences between “My list vs. their list” easy to detect, and 
by providing the capacity for the user to easily act on the 
discrepancies through the same interface. We described the 
iterative design process, the software prototype 
implementation and presented insights from our user study.  

The main contributions of this work are in the discrepancy-
first approach, the detailed discussions of key design 
decisions, and the principles behind them. We believe that 
while the home health setting introduces some unique 
challenges, the overall design of our medication reconciliation 
tool is directly applicable in other settings.  

Limitation: the work presented here is based on the 
assumption that the two medication lists can be matched 
pairwise. For example, a prescription for a 20 mg twice a day 
may have been filled as 40 mg with instructions to break the 
pill. Additional complications can arise, such as if two 
medications in list A should be matched with two or three 
medications on list B. Although we have developed initial 
concepts for this complex edge case, we did not address these 
complex situations in this work. 
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Network analysis of treatment patterns in breast
cancer care

Shane Weisberg, Douglas Hill, Rebecca Faill, and Amar K. Das

Abstract—Though cancer treatment is standardized at the
national level, not much of what we know about treatment
patterns of cancer patients is well supported by data. Cancer
patients are diagnosed and undergo complicated treatments over
extended periods of time and see new providers with different
specialties at each step along the way. To find information
about general patient care patterns, we constructed a patient-
sharing network of breast cancer providers and patients using
provider-patient encounter data and observed how this network
changes over the duration of treatment of those patients. By using
visualizations in three-dimensions in unison with mathematical
descriptions of these networks, we are able to recognize patterns
in how patients enter and progress through the network of
providers.

Index Terms—breast cancer, patterns of care, network visual-
ization, centrality

I. INTRODUCTION

W ITH the introduction of big data into medical care,
tools are now available to answer some of healthcare’s

most fundamental questions, such as whether there are rec-
ognizable patterns of care in medical practices and, should
they exist, whether they match common conceptions of what
they should be. This paper will use electronic health records
from cancer care centers in New Hampshire and Vermont to
construct a dynamic network of providers based on patient-
sharing relationships between providers and use both three-
dimensional visualizations and traditional network statistics to
detect and identify patterns in cancer care.

For this study, we are interested in how this network of
providers changes over time as patients enter and exit the
network and whether patterns of care arise in this network. We
find that a provider’s location serves as the dominant structure
within the network with respect to shared patients, which is
to say that providers practicing at the same location share
more patients. Beyond this macro structure, we also find that
a provider’s specialty can serve as a predictor of when in
the cancer care cycle a provider will be most central with
respect to the treatment of patients. Specifically, we will look
at eigenvalue centrality to see which types of providers are
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most important to the network [1]. Those providers which are
highly connected are important in that they see many patients
and can serve as a focal point for resources but also act as
a bottleneck in patient care as many physicians and surgeons
often restrict the number of patients they can see in a day
[2]. Identifying these central providers is important to making
patient care more efficient and sustainable.

The data used for analysis herein is provider-patient en-
counter information gathered over two years from the Dart-
mouth Hitchcock Medical Center (DHMC) in Lebanon, New
Hampshire and neighboring institutions in and around Manch-
ester, New Hampshire and Nashua, New Hampshire. Specifi-
cally, we will focus on female breast cancer patients and their
paths as they enter the vast network of providers and progress
through their treatments. Cancer care is ideal for this type of
study as it involves visits with many different specialists at
different times throughout the treatment process and should
be fairly uniform across different treatment centers.

In the following sections, we will first take a look at past
work related to this topic before we discuss the data used
for this study as well as the computational tools and methods
used to analyze that data. Subsequently, we will discuss our
results, and display sample visualizations of the networks
and corresponding network statistics that solidify the results.
We will finish by discussing our conclusions and examining
possible extensions where this methodology could be used.

II. PREVIOUS WORK

The software used for visualizing our network was built
for this purpose, and though similar networks of providers
and patients have been studied, our methodology for doing
so is new, especially with the addition of a time dimension
to the network analysis. Bridewell and Das [3] used a similar
network of providers at the Palo Alto Medical Foundation and
Stanford Hospital to determine that while the institutions are
closely linked, patients tend to stay at the site where they
initially received care. The Bridewell and Das study viewed
the network as a static object rather than studying it over time.

Katz et al. [4] did similar analysis of patterns of patient
movement looking at referrals for breast cancer patients. In
this study, however, regression models rather than a network
model were used to support their findings. Wang et al. [5]
used network analysis and specifically different measures of
network centrality to study cancer treatment, though their
focus was gene signatures rather than patient care patterns.
Unnikrishnan et al. [6] looked at relationships over time
between providers in intensive care units, but used radically
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different methods to support their claims. Keating et al. [7]
also used networks to study relationships between providers,
in this case all at the same hospital, however this study deals
with transfers of information and ideas on a small scale rather
than referrals of patients at the scale used in this analysis.

III. DATA

The data used for this study was drawn from a patient cohort
consisting of all female patients over 21 years of age who had
a primary diagnosis of stage I-IV breast cancer as reported by
the Dartmouth Hitchcock tumor registry. Diagnosis dates of
patients in the sample range from April 2, 2011 to November
1, 2013 and care and treatment are recorded through year end
2014. Our sample contains 723 providers and 925 patients.
Patients appear in anywhere from one to 421 rows in our
dataset, where each billable piece of an encounter between
a patient and a provider gets its own row. The median number
of encounters of patients in our dataset is 19.

Each row of data details a specific interaction between a
provider and a patient and gives information about the provider
such as his/her location, specialty and the treatment given. For
each billing code or provider-patient encounter we have the
date of the interaction, the ID of the provider, the name of
the department, the provider’s specialty, the ID of the patient
as well as a short description of the event. The provider and
patient identification columns were used to determine which
providers were connected in the network. The dates of the
interactions for each patient were jittered uniformly by a
random number of days less than or equal to 45. From this
point, we normalized the dates such that each patient enters
the network simultaneously. We identified the first appearance
of each patient and subtracted this day number from each of
the patient’s appearances to standardize the time span over all
patients.

Beyond manipulating dates, we also generalized both a
provider’s location and his/her specialty into broader cate-
gories. Provider locations were sorted into one of four cate-
gories—Upper Valley (Lebanon, Hanover, Plymouth and Lyme
in New Hampshire and St. Johnsbury in Vermont), Manch-
ester (and Bedford and Derry, New Hampshire), Nashua (and
Hudson, Milford and Merrimack, New Hampshire) and Other.
Some providers practice in multiple locations; we chose the
most common location for our categorizations. Additionally,
each provider was sorted into one of nine groups based on
one of 50 unique specialties seen in the dataset. These nine
groups with group size in parentheses are medical oncologists
(71), medicine specialists (239), mental health specialists
(10), ob/gyn specialists (46), primary care specialists (159),
radiation oncologists (10), radiology specialists (17), surgical
oncologists (8) and surgical specialists (163).

IV. METHODOLOGY

Using the data as outlined above, we built a network where
providers are nodes and are linked by an edge if they share one
or more patients in a given time span. We chose to represent
our network using adjacency matrices, and Python was used
to convert the rows of data into this form. Representing the

networks as such makes both visualizing the network and
performing calculations of network statistics simple. Given an
adjacency matrix A and providers p 2 {p1, p2, ..., p723} we
say providers p

i

and p

j

are adjacent if they share one or more
patients in a given time and the entry A

ij

contains the number
of patients shared by providers p

i

and p

j

. It is important to
note that these relations are non-directional, and so this matrix
is symmetric.

In order to observe changes in this network over time, it
was necessary to expand this familiar structure to incorporate
the dimension of time. Thus, we built a three-dimensional
structure constructed of layers of adjacency matrices where
each individual layer can be interpreted as the matrix A

described above, and each layer represents the state of the
network at a given time. So now, entry A

ijt

contains the
number of patients shared by providers p

i

and p

j

at time t.
This new structure makes defining a relationship non-trivial.

In a static network, any patient who sees two providers at
any point in their treatment becomes an edge between those
providers in the network. But adding time complicates this
relationship. We decided that a patient shall link two providers
if and only if she sees both providers within a period of 30
days. We determine a patient to be seeing two providers at the
same time if she sees both within a month. When building a
layer of the network, we first filter the data to select only data
in a 30 day interval and construct the adjacency matrix from
that subset of the data. If a patient saw provider p

i

on day
d and provider p

j

on day d + t where 0  t < 30 then and
edge connecting the two providers was added to the network
on layers {d + t � 30, d + t � 29, ..., d, ..., d + t, ..., d + 30}
where each day in the simulation is given a layer. This large
structure was then converted to the proper xgmml format to be
read by our 3D visualizer and additionally printed in matrix
form to perform matrix calculations in MatLab.

The 3D visualizer was built using the Unity Game Engine
[8] and enabled us to build a dynamic, interactive network
from our data. This network was built using a force-directed
algorithm where nodes repulse each other and edges pull nodes
towards each other with a force proportional to the weight of
the edges. This structure is set up so that highly interconnected
groups or clusters are displayed together in the graph and
highly connected nodes tend to fall towards the center of the
graph.

V. RESULTS

Using visualizations and network statistics, we found that
there are recognizable patterns in cancer care and that largely
these patterns agree with clinical expectations of care patterns.
This section will include screenshots of our provider-patient
network generated with our 3D visualizer and will back up
claims of structure using descriptive statistics of the network.

In Figure 1, the entire unfiltered network on the day all
patients enter the simulation is displayed. Nodes are colored
by a provider’s primary location: maroon represents the Upper
Valley; blue represents Manchester; gray represents Nashua.
The image makes apparent that providers based in the same
location share more patients and therefore are more closely
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Figure 1. A snapshot from the 3D visualizer showing the unfiltered network of
providers and patients on the first day of the time span. Nodes are colored by
the primary location of the provider. Maroon nodes are providers who practice
in the Upper Valley, blue nodes are providers who practice in Manchester and
gray nodes are providers who practice in Nashua.

related. We can use density, a measure of concentration of
edges to support this conclusion [9]. Density measures the
ratio of the number of edges in a graph to the total number of
edges possible in a graph. For an undirected network with
n nodes, there are n(n�1)

2 possible edges. Table 1 shows
number of edges, potential edges and densities for the full
network pictured below as well as for networks that have been
filtered by location. As expected, each of the filtered networks
has a higher density than the full network, which further
demonstrates the clustering of the network by location. The
increase in density for the Upper Valley network is small since
it is much larger than the Manchester and Nashua networks,
and so adding these nodes and edges does not dramatically
change properties of the network. This clustering in itself is
not a groundbreaking discovery, however it does support the
conclusions given by Bridewell and Das [3], and it would
be neglectful to discuss this network without mentioning its
primary structure.

Table I
DENSITIES OF NETWORKS FILTERED BY PRIMARY LOCATION

Location All Upper Valley Manchester Nashua
Number of edges 771 529 98 41

Possible edges 36,046 18,145 1378 325
Density 0.0214 0.0292 0.0711 0.1262

From here we will examine provider specialties and how the
importance or centrality of different types of providers varies
with time. Figure 2 shows a two-dimensional projection of
the center of the full network on the first day range of the
simulation where nodes are now colored on a scale from red to
green where redder nodes have fewer adjacencies. Observable
is that the surgical oncologists, which are circled in yellow,
include both of the most connected nodes and are adjacent
to most of the other central nodes. Nodes adjacent to the
middle surgical oncologist are represented as spheres rather
than cubes. Most patients see a surgical oncologist soon after
their diagnosis as illustrated in the figure below.

Figure 2. A snapshot from the 3D visualizer showing a two-dimensional
projection of the unfiltered network on the first day of the time span. Nodes
are colored on a scale from red to green where the reddest nodes have the
fewest edges and the greenest nodes have the most edges. Nodes circled in
yellow are surgical oncologists. Spherical nodes are those adjacent to the
center circled node.

Much can be learned about patterns in cancer care by
looking at these networks in this manner and at how the
networks change over time. However, a more efficient way to
determine network trends and structure, specifically centrality
[1], is by using network statistics, which are more exact and
can be calculated and plotted over time. Figure 3 shows the
average centrality score for four groupings of providers over
the first 180 time windows of patient care for all providers
and patients in the sample. The averages are smoothed using
locally weighted linear regressions. We look only at the first
180 days of the time span as beyond this visits become less
frequent due to more variability in scheduling, so the graphs
become noisy and the centrality averages have less meaning.

Figure 3. Average eigenvalue centrality over first 180 day ranges of the
simulation for medical oncolologists (blue), surgical oncologists (red), radi-
ation oncologists (green) and primary care specialists (black). Curves were
smoothed using a locally weighted linear regression.

As we saw in the visualization, surgical oncologists are most
central to the network on day one and they remain central
over the first months of the time span. Surgical oncologists
show a decreasing trend overall as radiation oncologists and

2016 Workshop on Visual Analytics in Healthcare



4

medical oncologists begin to fall towards the center of the
graph as we approach the second half of the time span.
Additionally, we see a very characteristic dip in the average
centrality score of surgical oncologists in the first 40 days,
which will be addressed later. Medical oncologists show a
gradually increasing trend while the radiation oncologists have
higher variability but trend neither upwards nor downwards.
Primary care specialists are also shown in this plot. More
than one fifth of the providers in the sample are primary care
specialists. Therefore, no providers in this group are highly
central to the network; rather they tend to float around the
periphery of the network.

Additional insight, especially regarding the role of radiation
oncologists, can be seen by filtering patients by the stage of
cancer exhibited upon diagnosis4. In Figure 4, we return to
visualizations of the network to observe this. In the snapshot
below we show the network for the time span between days
21 and 51 filtered to include only stage I cancer patients.
Again the nodes are colored from red to green with increasing
number of edges, and this time the radiation oncologists
are circled in yellow and the spherical nodes are all nodes
connected to the topmost circled node. In this image, we
see a pair of radiation oncologists right at the center of
the network and these are the two most highly connected
providers in the network, but we do not see a corresponding
increase in centrality in Figure 3 as we would expect. A similar
phenomenon can be seen in the network filtered by stage II
patients in the day 10 to 40 span.

Figure 4. A snapshot from the 3D visualizer showing a two-dimensional
projection of the network filtered to show only stage I cancer patients. Nodes
are colored on a scale from red to green where the reddest nodes have the
fewest edges and the greenest nodes have the most edges. Nodes circled in
yellow are radiation oncologists. Sperical nodes are those adjacent to the
uppermost circled node.

Again we can make centrality plots to resolve this issue and
to better observe patterns of care over time. Figures 5 and 6
show the same information as Figure 3 after filtering the data
by the patient’s stage of cancer. There were only 89 stage III
and 24 stage IV patients as compared 519 patients with stage
I cancer and 274 patients with stage II cancer. Due the small
sample size of the stage III and IV patients — and the highly

noisy nature of the plots — they have been omitted here.
We see that surgical oncologists and medical oncologists

show mostly the same trends as in Figure 2. However, the
radiation oncologists show radically different behavior at the
beginning of the time span as predicted by the visualizations.
Noticeable is how in both plots, the green line representing
radiation oncologists spikes above the red line for surgical
oncologists in the first 20 days. Because this spike occurs
at different times, it destructively interferes with itself and
so is not shown in Figure 3. But we can see both in the
filtered centrality plots and in the visualizations that radiation
oncologists are highly central to the network, especially in the
first month of care. We do not see this destructive interference
pattern with other providers. Both graphs also show a third
surgical spike around the day 140 to 170 span.

Figure 5. Average eigenvalue centrality over first 180 day ranges of the
simulation for medical oncologists (blue), surgical oncologists (red), radiation
oncologists (green) and primary care specialists (black) after data was filtered
to include only stage I cancer patients. Curves were smoothed using a locally
weighted linear regression.

Figure 6. Average eigenvalue centrality over first 180 day ranges of the
simulation for medical oncologists (blue), surgical oncologists (red), radiation
oncologists (green) and primary care specialists (black) after data was filtered
to include only stage II cancer patients. Curves were smoothed using a locally
weighted linear regression.

Primary care specialists see a boost in their average cen-
trality scores across the time span in the stage II plot when
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compared to the stage I plot and the unfiltered plot. This
boost most likely arises due to the shape of the centrality
distributions exhibited by the primary care specialists. This
group of providers has a within-group distribution of central-
ities that is highly skewed to the right, meaning that most
of the providers have very low centrality scores while a
few have very high scores. The distribution of centralities of
primary care specialists has average skewness of 5.05—much
higher compared to surgical and radiation oncologists, for
example, which have skewnesses of 1.27 and 1.60 respectively.
Skewness is calculated as E(x�µ)3

�

3 where µ is the mean on
the distribution of x and � is the standard deviation of the
distribution of x. This skewness accounts for the increase in
centrality scores as with a decreased sample size, the highly
central nodes have more influence on the average centrality.
This suggests that while most primary care specialists are
peripheral to the network, especially for stage I patients, a
few select specialists become more central for care of stage
II patients. With a larger sample of higher stage patients, it
would be possible to asses whether this pattern continues for
stage III and IV patients.

VI. CONCLUSIONS

There is a clear trend to be found in the network visualiza-
tions shown especially vividly in Figures 2 and 3. Patients
enter the network on the first day and many see surgeons
within the first 10 days after their diagnosis. After this initial
surgical visit, patients may see a radiation oncologist, and the
data suggests that there is more urgency to see a radiation
oncologist for stage II patients than for stage I patients.
This centrality spike for radiation oncologists likely comes
from neoadjuvant radiation therapy, which is prescribed by
surgeons to reduce or downstage a tumor before surgery
[10]. Not surprisingly, we then see a corresponding spike
in centrality of surgical oncologists as the actual surgery to
remove the tumor is performed. From here, treatment is passed
to radiation oncologists and medical oncologists who perform
a combination of radiation therapy and chemotherapy. To draw
further conclusions about treatment patterns past this early
stage of cancer treatment, more data is necessary to ensure
more coincidence between patients on later days in the time
span.

This information about the early steps in breast cancer
treatment can potentially have a variety of applications for
hospitals, which can use this data to better allocate resources
and time to make treatment more efficient. The centrality of
the surgical oncologists and radiation oncologists can partly be
attributed to the fact that these types of providers are scarce
in the sample. Patients who need surgery or radiation must go
through one of a very limited number of providers. Therefore,
this method could potentially be used to diagnose resource
shortages both at specific hospitals and in the health care
system in general.

Further analysis can be performed on this data, including
using different network statistics such as assortativity, from
which we can learn a lot about referral patterns. Assortativity
[11] is a measure of which types of nodes link to other types

of nodes. A high assortativity rating demonstrates that nodes
of high degree link to other nodes of high degree, which
would suggest a network dominated by few providers while
a low assortativity rating demonstrates that nodes of high
degree link to nodes of lower degree, which would suggest a
more uniform network. In the context of cancer care, a highly
assortative network would imply that highly central providers
refer patients to the same providers consistently rather than
spreading out their referrals meaning that it is likely that the
network is not being travelled by patients as efficiently as
possible.

Similar analysis can be performed on datasets from other
treatment centers. As cancer care is highly regularized na-
tionally, we would expect that the same trends can be seen
regardless of location. Our technique also has the potential to
address more and broader questions about cancer care than the
select and narrow one set forth here.
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ABSTRACT

As medical organizations increasingly adopt the use of electronic
health records (EHRs), large volumes of clinical data are being
captured on a daily basis. These data provide comprehensive in-
formation about patients and have the potential to improve a wide
range of application domains in healthcare. Physicians and clinical
researchers are interested in finding effective ways to understand
this abundance of data. Use of visual analytics to analyze and ex-
plore healthcare data is one such research direction. In this work,
we present a visualization and analysis environment to understand
patient progression over time. Through the use of optimized data
structures and progressive visualization techniques, we allow users
to interactively explore how patients and their progression change
over time. Compared to existing techniques, our work provides ad-
ditional flexibility in analyzing patient data and has the potential to
be used in a real-time hospital setting. Finally, we demonstrate the
utility of our approach using a publicly available intensive care unit
(ICU) database.

1 INTRODUCTION

The US healthcare system is producing hundreds of thousands of
patient records detailing a wide range of information from admis-
sion times and dates, to symptoms and outcomes. Until recently,
this data has been difficult to access, especially in bulk, often lacked
a useful organization, and thus has been generally underutilized for
clinical research. With the increasing use of EHRs, this paradigm
changes, allowing researchers easy access to a large collection of
information. If used effectively, this data may lead to better predic-
tions of patient outcomes, personalized medication, and more tar-
geted interventions. However, to realize this potential requires the
ability to understand the clinical data in detail. Given the massive
amounts of available data, for example, ICUs may collect real-time
data streams of all patients [1], which implies automatic or semiau-
tomatic techniques to identify and explore interesting patterns and
underlying trends. In this context, visualizing and exploring patient
progression over time can provide valuable insights and facilitate
the decision-making of physicians and clinical researchers.

Several factors need to be taken into consideration when ana-
lyzing this type of data: First, given the large number of patients,
an individual, per-patient analysis is time-consuming and does not
lend itself to finding commonalities and trends. Instead, patients
should be grouped according to various criteria, such as symptoms,
outcomes, etc. Second, to compare groups of patients who arrive at

⇤e-mail:wathsy@sci.utah.edu
†e-mail:yarden@sci.utah.edu
‡e-mail:bremer5@llnl.gov
§e-mail:scott.duvall@utah.edu
¶e-mail:pascucci@sci.utah.edu

different times, their records must be aligned, for example, by their
time of admission, time of major procedures or other common fac-
tors. Third, patient progression over time needs to be presented in a
concise manner to allow simultaneous exploration of large numbers
of patients. Finally, to utilize such a system in a hospital setting, the
analysis must be interactive, allowing users to quickly explore dif-
ferent hypotheses.

The ideal system described above presents a number of practical
challenges, especially for the large databases of interest. First, there
exist a number of potentially interesting metrics by which to group
patients and thus any analysis must be flexible and efficient enough
to change the metric on-the-fly. Furthermore, whereas some met-
rics are easy to apply and absolute (e.g., splits by gender), others
depend on specifying a similarity threshold that determines when
two patients are considered to be in the same group. However, in
practice this threshold is typically not known a priori, and in fact un-
derstanding how patient distributions and progression change with
different thresholds may provide important insights. Most exist-
ing approaches focus on a single metric and a preselected thresh-
old [37, 38]; we present a system that allows users to freely explore
metrics and thresholds in an interactive setting.

Another challenge is the size and complexity of the data. Given
a large number of patients and high temporal resolution, it is often
difficult to grasp the progression of certain groups, let alone iden-
tify salient ones. Therefore, presenting data in a concise manner
and providing support for various parameter selections and simpli-
fications is crucial to provide the necessary insights.

From an analysis perspective, providing an effective exploration
of patient progression requires three abilities: first, grouping pa-
tients within a time step at different similarity thresholds; second,
correlating patient groups over time; and third, interactively visual-
izing and exploring patient progression to understand how different
similarities affect their behavior. In this paper, we focus on extract-
ing patient groups across multiple patient similarities and exploring
their progression with the aid of tracking graphs, where a concise
representation of feature evolution is captured as a collection of fea-
ture tracks, see Figure 1. We provide clinical researchers with a vi-
sualization and analysis environment that is developed based on our
earlier research in the scientific domain [35, 36]. This prior system
couples feature grouping and correlation components with visual-
ization techniques to explore the temporal evolution of features in
combustion data sets.

Our visual analytics process data in several steps. First, we use
the patient similarity metric introduced in [18] to group patients
across multiple similarity thresholds. Then, patient groups are cor-
related over time by tracking the individual patients within. In order
to allow interactive extraction of data, our system uses optimized
data structures to store these patient group and correlation details.
Within the system, tracking graphs are used to present a global
concise view of patient progression, and progressive visualization
techniques are employed to enable interactive exploration of data.
Finally, in collaboration with clinical researchers, we apply our vi-
sualization and analysis environment to a publicly available ICU
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Figure 1: An example tracking graph showing patient progression
over time. Each node represents a patient group and its “track”
shows how that group progresses over time.

database, the clinical database of Multiparameter Intelligent Moni-
toring in Intensive Care (MIMIC II) databases [30], and explore the
temporal progression of patients for varying similarity thresholds.

2 RELATED WORK

A subset of the relevant related work is presented here to pro-
vide context and background for our research work. Analyz-
ing time-varying data sets usually involves feature extraction and
tracking steps. For healthcare data, tracking the progression of
patient groups, i.e., the features-of-interest, is relevant to clini-
cal researchers. Among the many feature definitions and their
computation techniques can be found in the literature, techniques
that extract feature information for all or a large range of values
in a single pass are particularly useful. These techniques often
result in hierarchical representations. For instance, hierarchical
clustering [34, 15, 39, 3, 6] and various other topological tech-
niques [4, 32, 5] have been used to effectively capture flexible fea-
ture hierarchies.

Hierarchical clustering is considered to be one of the most pop-
ular methods for creating a feature hierarchy. It partitions data into
homogeneous groups based on a measure of similarity through the
use of clustering. Depending on the similarity measure used, the re-
sults can lead to very different hierarchies. Moreover, many sequen-
tial and parallel algorithms for hierarchical clustering are available
in the literature. Several important results on sequential algorithms
are presented in [21, 10] and details on previous parallel algorithms
for hierarchical clustering are summarized in [22]. This type of
clustering imposes a hierarchical structure on the underlying data
irrespective of whether such a structure is appropriate. However,
due to its simplicity, many applications have used this method to
explore the clustering hierarchy of features. In this work, we also
make use of hierarchical clustering to group patients within a time
step at different similarity thresholds.

In topological analysis, techniques exist that are able to effi-
ciently extract and encode entire feature families in a single analy-
sis pass. Reeb graphs [24], contour trees [7], merge trees [5], and
Morse-Smale complexes [4] are several such techniques. Among
them, Reeb graph, contour tree, and merge tree are contour-based
and the Morse-Smale complex is gradient-based. As a result, the
Morse-Smale complex captures very different structural informa-
tion.

Visualizing the temporal evolution of features has long been a
problem of interest within the visualization community. Depend-
ing on the subject area, many different techniques have been de-
veloped to address this problem. Traditionally, abstraction, illus-
tration, morphing or animation-based techniques [20, 14, 16] have
been used to visualize temporal evolution of features. Other tech-
niques such as change detection [31] and high-dimensional projec-
tion [17] have also been used in the past. Tracking graphs that show

the feature evolution as a collection of feature tracks that split or
merge over time are considered to be an effective representation
for visualizing feature evolution [28, 35]. These graphs provide
concise global views of feature evolution and are more amenable
to filtering and simplifications. As clinical researchers are particu-
larly interested in concise representations, we make use of tracking
graphs to visualize patient progression over time.

[29] includes a comprehensive survey of information visualiza-
tion systems used to visualize, explore, and query EHRs can be
found. These approaches related to EHRs can be broadly cate-
gorized into two categories: those that focus on a single patient
record [27, 13, 26] and those concerned with a collection of patient
records [33, 37, 38, 19]. Approaches in the first category focus on
providing comprehensive information about a single patient (e.g.,
patient history, significant events, medication, and treatment), and
the second category aims at presenting an overview from multiple
patients. The latter provides less detail on each individual patient
and focuses more on recognizing patterns and outliers within pa-
tient groups. Among these approaches that fall in the second cat-
egory, LifeFlow [38] and OutFlow [37] are particularly interesting
as they visualize event sequences in EHRs. LifeFlow uses color for
a compact view and OutFlow uses a graph-based representation. In
contrast, we do not visualize the progression of patient groups as
an event. At a particular time step, the current event of a patient is
one of the parameters considered within the patient similarity met-
ric used. Also, within our system any similarity metric can be used
to define patient similarities, providing more flexibility.

3 SYSTEM COMPONENTS

An interactive visualization and analysis environment is essential
to gain an in-depth understanding of patient progression. In this
work, we refine a prior system that relies on dynamically con-
structed tracking graphs to enable feature extraction, tracking, and
simplification [35, 36]. Although this system is designed to study
general time-varying features, so far it has been applied to analyze
features only in scientific simulations. We extend its functional-
ity to effectively visualize patient progression in healthcare data.
This section provides a comprehensive description of our system
partitioned into several subsections dealing with: patient grouping,
patient correlation, visualization, exploration, and implementation.

3.1 Grouping Patients Within a Time Step

The first step towards understanding clinical data is defining its fea-
tures and a time step size based on which subsequent analysis is to
be conducted. For our intended research, the feature-of-interest is a
patient group (i.e., similar set of patients), and a day is considered
to be the appropriate time step size. Next, for each time step in
the data set, these patient groups need to be extracted and aligned.
In this work, to ensure all patients’ hospital stays start at the same
time, we align data based on a patient’s admission time.

Once features are extracted and aligned, they should be grouped
based on a appropriate grouping method. By maintaining a notion
of scale, this feature grouping naturally approximates a meaningful
hierarchy. The naive approach of creating this hierarchy is by ex-
haustively precomputing all possible features at all possible scales.
Many popular grouping algorithms also produce nested sets of fea-
tures for varying scale, which in turn creates these types of hierar-
chies (e.g., hierarchical clustering techniques progressively merge
elements [8] and threshold-based segmentation creates increasingly
larger regions [4]). In our case, we use hierarchical clustering. For
each time step in the data set, patient groups are clustered based on
their similarity to generate a hierarchical representation in the form
of a tree. During clustering, we use the metric of [18] to define
patient similarities but any other similarity metric could be used as
well.
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Figure 2(a) shows an example where such a hierarchy is con-
structed by progressively merging individual patients, with the most
similar ones clustered first. Each leaf in the hierarchy represents a
patient and each branch a patient group. Along with the hierarchy,
various patient group-based attributes such as patient count, mean
age and mean heart rate are computed and stored on a per-branch
basis. For a given data set, an offline preprocessing step is used
to compute these patient hierarchies, and the results are stored in a
look-up structure to allow interactive exploration of patient groups.
Within this look-up structure, for each patient group, its parent de-
tails and patient group-based attributes are stored. To determine
correspondences across patients later, each patient is marked with
a unique ID. This hierarchy is computed for each time step in the
data, and is stored in a separate file to allow interactive exploration
of patient groups.

(a) (b)

Figure 2: (a) A patient hierarchy constructed by progressively
merging similar patients, with the most similar ones clustered first.
(b) To extract patient groups, the hierarchy is cut at a fixed thresh-
old, resulting in a forest of subtrees, where each subtree represents
a patient group.

Once the hierarchy is computed, patient groups and their at-
tributes can be quickly and easily extracted for any similarity
threshold within its range, see Figure 2(b). Given a similarity
threshold s within the full range of r, the corresponding patient
groups can be extracted by “cutting” the hierarchy at s. This creates
a forest of subtrees, where each subtree represents a patient group
existing at s.

3.2 Correlating Groups of Patients Over Time
Once patient groups are identified, the next step is to correlate them
over time by tracking individual patients within. Two patient groups
in consecutive time steps are considered to be correlated if they
share at least one patient. All such correlations are extracted for
each time step. To efficiently store and interactively extract these
correlation details, we utilize the meta-graph structure of [35]. Sim-
ilar to the aforementioned patient hierarchy, this meta-graph struc-
ture is able to encode patient group correlations and their attributes
for a range of similarity thresholds.

The meta-graph is generated in two steps. First, per-patient cor-
relations are computed using the patient IDs computed above. For
example, two patients in consecutive time steps are considered to
be correlated if they have the same ID. As individual patients are
represented by leaf branches in the feature hierarchy, this step re-
sults in correlations across leaf branches in consecutive time steps.
If a correlation exists, we assign an edge with the weight of 1 across
the two corresponding leaf branches, (bi

t , b j
t+1, 1). Second, these

per-patient correlations are accumulated along the feature hierarchy
to compute the per-patient group correlations. At the accumulation
time, if a correspondence already exists, we accumulate only the
edge weights.

Just as in the patient hierarchy, various correlation-based at-
tributes such as the amount of patient overlap are computed and
stored within the meta-graph structure. Again, once the meta-graph

is computed, patient group correlations and their attributes can be
quickly extracted for any similarity threshold within the full param-
eter range. For a selected similarity threshold s, first, patient groups
existing at s for each time step in the data set are obtained using
the precomputed patient hierarchies. Then, correlations that exist
across those extracted patient groups are obtained from the meta-
graph structure. Together, these extracted patient groups and their
correlations form the tracking graph at f , see Figure 3. This meta-
graph structure is also created in an offline preprocessing step and
the resulting structure is stored in multiple files (i.e., one file per
time step), each containing a set of edges representing its correla-
tions to patient groups in the next time step.

Figure 3: Tracking graph construction. For a similarity threshold s,
first, patient groups existing at that value are obtained from corre-
sponding patient hierarchies. Then, the meta-graph is used to ex-
tract correlation details. Here, the correlations extracted are indi-
cated with black arrows. The resulting tracking graph is displayed
at the bottom.

3.3 Visualizing and Exploring Patient Progression

Our system for exploring patient progression over time contains
three views: patient grouping view, patient progression view, and
patient view, see Figure 4. Within each view, various progressive
visualization techniques are employed to achieve interactivity. For
instance, data is always presented with respect to a focus time step
that is processed first. Data for the neighboring time steps is then
extracted and presented in order of increasing distance. All views
designed for only a single time step (i.e., patient grouping view and
patient view), use the focus to determine their time step. The pa-
rameters such as hierarchy parameters and other filter parameters
are coordinated across all views to provide a fully linked analysis
environment.

3.3.1 Patient Grouping View

To enable researchers to gain a quick visual understanding of how
patients group together for varying similarity thresholds, the patient
hierarchy of the focus time step is visualized within this view. As
the similarity threshold is changed, active patient groups within the
hierarchy are also highlighted. In Figure 4(b), the selected similar-
ity threshold within the hierarchy is displayed in a brown vertical
line, and the active patient groups are highlighted in prominent col-
ors.
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Figure 4: Our system contains three views: (a) patient view, (b) patient grouping view, and (c) patient progression view. The patient view
consists of several subcomponents: (d) a word cloud, (e) textual, (f) geometric embedding, and (g) geospatial views. The patient grouping
view shows the hierarchy for the focus time step and the patient progression view displays the tracking graph for the current focus and time
window. Within the patient progression view, nodes are scaled based on the patient group size, and the focus time step is indicated with a black
arrow. Here, a patient group is selected, which results in its progression being highlighted (indicated in red within the patient progression
view). In the patient view, the selected patient group’s details are displayed.

3.3.2 Patient Progression View

This view visualizes the temporal progression of patients using
tracking graphs. Starting from the user-defined focus time step,
nodes and edges are iteratively added both forward and backward
in time up to the user-defined time window to create the tracking
graph, see Figure 4(c). Each node in the graph represents a patient
group. A set of nodes in the same x coordinate indicates groups in
one time step and edges across them indicate their correlations. For
visual clarity, nodes in the focus time step are always displayed in
prominent colors. Progressive techniques as in [35], specifically, a
fast initial graph layout and a slower greedy one, are used to visu-
alize these tracking graphs.

3.3.3 Patient View

Several visualization techniques are combined here to present a spe-
cialized view of patients. Specifically, we integrate word cloud,
textual, geometric embeddings, and geospatial visualizations, see
Figure 4(a).

• Word Cloud Visualization
This component is dedicated to providing a quick overview of
textual information regarding patients. For a selected patient
group, a word cloud is constructed from the patient group-
based attributes stored within the patient hierarchy, see Fig-
ure 4(d). Here, to obtain more intuitive overviews, the numer-
ical attributes are converted into ranges. This visualization
displays high-frequency words using bigger fonts and brighter
colors, and others in faded and smaller fonts.

• Textual Visualization
As the name suggests, this visualizes textual details of pa-
tients in their native domain (i.e., as text), see Figure 4(e). For

a selected patient group, textual visualization displays its at-
tributes such as hospital admission ID, patient ID, care unit
and age.

• Geometric Embedding Visualization
Regardless of the data type, visualizing geometric embedding
reveals interesting details and trends about data. This view
visualizes the geometric embedding of patients in either 2D
or 3D, see Figure 4(f). As geometric embedding details are
not very obvious for the clinical data, for each time step, the
GraphViz [11] ‘neato’ layout algorithm together with patient
similarity details is used to compute the 2D embedding of pa-
tients.

• Geospatial Visualization
When relevant information is available, we allow data explo-
ration to be augmented with geospatial visualizations, see Fig-
ure 4(g). For instance, if a patient has his physical location
details available for each moment in time (both during and/or
prior to his hospital stay), this information will be visualized
within this view. In addition to visualizing patient geospa-
tial locations, their trajectories can also be displayed to easily
identify data trends related to geographic locations.

3.3.4 Interactive Exploration

As tracking graphs can easily become complex and difficult to un-
derstand, various simplifications have to be performed on them to
successfully understand their underlying trends. Specifically, we
enable several simplification options. Through the linked-view in-
terface, researchers are allowed to explore data sets by changing the
focus time step and time window. They can select a particular day
within a patient’s hospital stay, expand and contract its neighbor-
ing days to view progression both forward and backward in time.
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Within our system, the similarity threshold within the patient hier-
archy, correlation amount within the meta-graph and other attribute
values available (i.e., patient group-based and correlation-based),
can all be explored. We also allow tracking graphs to be filtered by
the length of stay of a patient group, which enables small patient
stays to be eliminated from the analysis.

Valence two and zero nodes of a tracking graph can be hidden to
prevent visual clutter, nodes can be scaled based on their size, and
progressions of certain patient groups can be highlighted. To help
researchers maintain context across systems’ views, we also make
use of correlated color maps and allow nodes to be colored using
various patient group-based attributes. All these options combined
enable researchers to interactively simplify tracking graphs, isolate
interesting patient progressions and explore their parameter space.

3.4 Implementation
Our system is implemented using the ViSUS framework [25, 23],
which provides the basic building blocks for designing a streaming,
asynchronous dataflow. Figure 5 shows the dataflow utilized within
our system.

Figure 5: Our system’s dataflow contains several modules. The data
is read into the system using the Data Reader module. Then,
this node and edge information is filtered according to the current
parameters within the Filter module. This module sends the re-
sultant data to Layout and View modules simultaneously. The
two Layout modules within the dataflow compute the relevant
graph layouts and the View modules render the information re-
ceived.

The Data Reader module is dedicated to reading data into the
system. It checks whether all data required for the current track-
ing graph has been loaded. If needed, it loads the required data
and passes it to the Filter module. This module filters the received
patient group and correlation details for the current parameter and
attributes values. This filtered information is then simultaneously
sent to layout and view modules.

Each of the two layout modules computes a graph layout and
sends those layout details to the relevant view modules for ren-
dering. The Hierarchy Graph Layout module computes the initial
layout for the tracking graph and sends this information to the Pa-
tient Grouping View and Patient Progression View modules. This
hierarchy graph layout is computed only once for each time step
as the data is read for the first time. The second layout module,
Greedy Graph Layout, computes a greedy layout for the tracking
graph each time its parameters change and passes them to the Pa-
tient Progression View module. This greedy layout is computed
to make sure the edge crossings are minimized within the tracking
graph.

Our dataflow contains three view modules. The first view mod-
ule, Patient Grouping View, visualizes the patient hierarchy of the
focus time step. Once the module receives the necessary node and
hierarchy details from Filter module and the layout details from
Hierarchy Graph Layout module, it renders the patient hierarchy.
The Patient Progression View module initially renders the tracking

General Patient demographics, hospital admissions,
discharge dates, room tracking, death dates
(in or out of the hospital), ICD-9 codes,
unique code for healthcare provider, and
type (RN, MD, RT, etc).

Physiological Hourly vital sign metrics, SAPS, SOFA,
ventilator settings, etc.

Medications IV meds, provider order entry data, etc.
Lab Tests Chemistry, hematology, ABGs, imaging,

etc.
Fluid Balance Intake (solutions, blood, etc), output (urine,

estimated blood loss, etc).
Notes & Reports Discharge summary, nursing progress

notes, etc; cardiac catheterization, ECG,
radiology, and echo reports.

Table 1: An overview of the data categories within MIMIC II clini-
cal database

graph using the hierarchy graph layout. Then, as the greedy layout
becomes available, it is integrated with the current graph. The third
view module, Patient View, provides more specific views of patients
(geometric embedding, geospatial, word cloud, and textual visual-
izations). Once this module receives the required data, depending
on which visualization mode is selected, the corresponding compu-
tations and renderings are triggered. Each time parameters and/or
selections are changed, the current processing within the dataflow
is interrupted and restarted. However, rendering within the views
maintains the current state for visual continuity.

Most parts of our system (except word cloud and geospatial
visualizations) are implemented in C++ and use OpenGL render-
ing. The word cloud and geospatial visualizations make use of
JavaScript libraries and functions such as d3-cloud [9], a Wordle-
inspired word cloud layout, and Google maps [12]. Within the sys-
tem, the integration between C++ and JavaScript is achieved using
the Awesomium library [2], which enables C++ code to be seam-
lessly integrated with HTML UI and to maintain interactions across
the two.

4 RESULTS

We enable clinical researchers to study the progression of pa-
tients via interactive exploration of dynamically constructed track-
ing graphs. The effectiveness of our framework is demonstrated
with the use of a publicly available ICU database.

The clinical database of Multiparameter Intelligent Monitoring
in Intensive Care (MIMIC II) databases [30] contains comprehen-
sive EHR data collected from hospital medical information systems
(both patient bedside workstations and hospital archives). This data
is obtained from a set of ICUs including medical, surgical, coro-
nary care, and neonatal in a single tertiary teaching hospital in the
2001 to 2008 time period. It includes patient information that falls
into various categories such as general, physiological, medications,
fluid balance, notes, and reports, see Table 1. The entire database
totals to about ⇡ 27GB and contains information about tens of
thousands of ICU patients. In order to visualize MIMIC II clini-
cal data within our framework, the relevant patient hierarchies and
meta-graph structures need to be computed and stored. This is done
in an offline preprocessing step.

First, for each day in a patient’s hospital stay, patient details
available in the database (e.g., admission ID, age, gender, race,
ICD-9 code, drug code, hospital stay length, mean heart rate, mean
temperature, and max urine output) are extracted, which results in
38291 patient admissions from 32536 patients. These details are
then aligned to make sure all admissions fall on the first time step
of the resultant data set. The resulting data set after aligning con-
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tains 174 time steps (i.e., 174 days).
Patients in each time step are then clustered together using the

metric of [18]. This patient similarity metric was previously ap-
plied to the same MIMIC II clinical database to identify patient
similarities within the first day of the ICU stay [18]. In order to
apply the metric to our research, the required clinical, administra-
tive, and categorical variables are extracted from the database for
each day within a patient’s hospital stay. Next, correlations across
patient groups are computed by tracking individual patients within
the groups.

Once the patient groups and their correlation details are stored
in our data format, the total data size is reduced to ⇡ 680MB. By
precomputing the patient hierarchies and meta-graph structures and
storing them using optimized data structures, we allow interactive
exploration of patient progression over time for several gigabytes
of data.

Researchers are provided with the flexibility to vary the patient
similarity thresholds and explore the entire parameter space inter-
actively. Such interaction provides an understanding of how pa-
tients group together for varying similarity thresholds within a par-
ticular day in their hospital stay. Figure 6 shows several examples
of patient groups and their progression for 30, 34, 35, 36, and 40
similarity thresholds. As the similarity thresholds decrease, more
patients are grouped together, reducing the complexity of the track-
ing graph. For a specific similarity metric, exploring the full range
of similarities enables researchers to gain insights on that metric’s
range of values. In our case, upon exploration we realized that for
this particular patient similarity metric, the appropriate similarity
threshold range is 30-38. Any similarity threshold below or above
that range either grouped all patients into one group or divided each
patient to be in a separate group.

Our system presents a global concise view of patient progression
over time using tracking graphs. The full tracking graph showing
the patient progression over time at 36 similarity threshold is dis-
played in Figure 7. By observing these tracking graphs, specifically
feature track length indicating the hospital length of stay of patients,
it is clear that although many of the patient stays are less than 90
days (i.e., 3 months), our data set also contains several longer pa-
tient stays. Of 32536 patients, we found 6 patients with hospital
lengths of stay greater than 90 days.

More importantly, various simplification options available in our
system allow researchers to further simplify the tracking graphs.
For example, filtering the tracking graph by correlation amount al-
lows removal of the least frequent patient progression paths from
the tracking graph, making frequent patterns more prominent. If an
analysis is to be conducted only on longer hospital stays of patients,
filtering options available within our system, specifically filtering
tracking graphs by the length of a feature track, are useful. Figure 8
illustrates several such simplification results.

Additionally, the patient view of our system is useful for obtain-
ing an overview of patient groups. As the user selects a certain
patient group, this view displays the details of its patients. The
word cloud visualization provides a quick visual overview of the
information within a selected patient group, see Figure 4(d). The
numerical attributes such as age and hospital length of stay are con-
verted to ranges to obtain more intuitive results. The exact patient
details are also presented in the textual visualization within the sys-
tem, see Figure 4(e).

5 CONCLUSION AND FUTURE WORK

In this work, we present a visualization and analysis environment
for understanding patient progression over time. The system’s inter-
active abilities to explore patient progression for different similarity
metrics and for varying similarities are a distinct advantage over ex-
isting techniques used in healthcare. Using our system, researchers
are able to explore how patients group together and progress over

Figure 6: Effects of varying the similarity threshold to explore the
temporal progression of patients. Here, patient groups and a portion
of their corresponding tracking graphs are shown at 30, 34, 35, 36,
38 similarity thresholds. The focus time step of the tracking graphs
is indicated with a black arrow, and the nodes are scaled based on
the patient group’s size. In each graph, patient progression for 10
time steps both forward and backward in time from the focus time
step is displayed.

time, identify frequent progression paths, and also refer back to the
native space of data for a visual understanding. By combining opti-
mized data structures and progressive visualization techniques, we
enable interactive exploration of terabytes size data, which provides
the platform to use this type of analysis in a hospital setting.

Within this work, an existing patient similarity metric is utilized
for defining patient similarities. At each moment in time, patient
similarities are computed by looking at a patient’s current clini-
cal, administrative, and categorical information. A better similar-
ity metric would be one that considers both the current information
of the patient and the entire history starting from the hospital ad-
mission time. In order to obtain better results, we hope to utilize
such a similarity metric in the future. In this work, we demon-
strate the applicability of our approach using a publicly available
ICU database. We are looking into obtaining additional health-
care databases to use within our system, specifically, databases with
geospatial information for which the patient view within our sys-
tem would prove to be more beneficial. Finally, we aspire to use
our visualization and analysis environment in a real-time setting to
assist the decision-making process of our collaborating physicians
and clinical researchers.
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Figure 7: The entire tracking graph showing the complete patient progression for the MIMIC II clinical database. The graph contains 1110
nodes and 1288 edges for a total of 174 time steps. Here, 36 similarity threshold is used.

Figure 8: Simplifications of tracking graph. (a) A tracking graph showing the patient progression for the first 50 days within the hospital stay
at 37 similarity threshold. (b) Tracking graph in (a) filtered to contain only correlations with overlap�2. (c) Tracking graph in (a) filtered to
contain only patient groups with size�5.
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Abstract 

A care plan is a sequence of medical interventions formulated for curing a specified disease. Doctors usually craft 
different care plans for different patients based on their knowledge and experience as well as following the clinical 
guidelines. An intuitive summarization of previous successful care plans not only provides doctors a reference of 
successful treatment guidelines, but also helps with the detection of anomalous treatments and the improvement of 
existing care plans. However, producing such kind of summarization is challenging due to the complexity of the data, 
i.e., large, temporal oriented, and multidimensional. In this paper, we propose a Sankey diagram-based visualization 
design to visually summarize care plans based on our medical collaborators’ requirements. We apply our tool to a 
medical dataset of pneumonia patients collected from a Children's hospital in Shanghai, China. Based on the 
visualization results, doctors detected many interesting findings, which will be discussed in the paper. 

1. Introduction 

Medical care planning is a critical step in the care delivery process, contributing directly to a patient’s treatment 
pathway and associated outcomes. A care plan is a sequence of medical interventions formulated to help patients 
manage their diseases. It is often crafted by doctors after a patient is diagnosed according to their intuition and 
experience, and is often based on recommendations in clinical guidelines. However, the correct care plan is not 
identical for everyone with a given medical condition due to the individual differences between patients. Thus, in 
order to help patients obtain better treatment, it is often necessary for doctors to customize the treatment plans 
recommended in clinical guidelines.   

The care plan customization process can be aided, in part, by examining the efficacy of alternative care pathways as 
experienced by previously treated patients. However, there are several complex issues which make this form of care 
plan analysis hard to accomplish. First, the large numbers of patients as well as the vast variety in drug types and other 
variables in medical data increase the complexity of datasets. These issues make the comparison and aggregation over 
large numbers of patients difficult if not impossible with traditional tools. Second, care pathway data contains temporal 
events, such as all medications and procedures, which make such data even more difficult to analyze. Third, it is 
important to not only consider the pairwise correlation of variables across patients, but also the combination of these 
variables (e.g., multiple medications or diagnoses, often overlapping in time). 

Although there are some existing solutions [6-8] for displaying time-oriented medical data, many fail to handle the 
case of simultaneous or overlapping medical treatment. The typical serial time-oriented data visualization techniques 
often used for medical data are therefore not quite suitable for such situations. There are also methods that have 
focused specifically on representing medical care plans [1-4], which inspired our work. However, unlike our work, 
most of these methods formulate care plans based on existing treatment guideline instead of medicines, thus missing 
details such as when did what medicine has been used for curing a disease.  

In this paper, we present a visual encoding schema based on the Sankey diagram to enable the analysis of treatments 
for a cohort of patients to examine differences in outcomes for variations in care plans. In this visualization, we 
summarize a patient’s care plan based on a layered graph model in which each node indicates a medicine (i.e., a 
treatment) and different graph layers indicates different time and links are used to connect the same treatment at the 
different time. Similar path plans of different patients are aggregated together to form patient cohorts that facilitate 
the comparison between pathways for finding better or worse medical care plan in a single clinical stage or the entire 
course of disease. Rich interactions are also designed to support an efficient data exploration and filtering. Throughout 
the paper we describe our design using a motivated problem related to Community Acquired Pneumonia (CAP). We 
include five sample analysis after discussed with CAP experts to explain the insights found through the visualization. 
The major contributions of this paper are as follows: 

2016 Workshop on Visual Analytics in Healthcare



  

1. Apply Sankey Diagram to real-world medical care plan data and verified its applicability after the evaluation of 
domain experts. 

2. A novel visual encoding method based on Sankey Diagram to display electronic medical care plan records. 

The rest of the paper is organized as follows. We review the related work in section 2 and describe our motivation 
problem in section 3. We introduce our visual encoding design in section 4 and demonstrate preliminary analysis 
sample and evaluation results from domain experts in section 5. And finally conclude in section 6. 

2. Related Work 

In this section we review the papers related to work, which basically includes techniques developed for visualizing 
temporal event sequences and medical care planning. 

2.1 Visualizing temporal event sequences 

Generally, this topic lies in the direction of visualizing time-oriented data, which is comprehensively discussed in [5]. 
We focus on the techniques developed for representing event sequences in the healthcare domain. Sankey Diagram is 
one of the most intuitive and commonly used methods for representing the event sequence, which is also adopted in 
our visualization design. Besides this approach, many designs such as LifeLines[6], Timelines[7], Eventflow[8] and 
many other timeline-based representations[9-12] align event sequence horizontally along a timeline in which one 
patient record is split into different event categories, thus making them inefficient for cohort analysis. LifeFlow[13] 
aggregates health records of multiple individuals based on a Treemap but each event type are divided into several 
pieces and is hard to analyze in general. There are also visualization tools like[14-20] aggregates multiple records 
based on data transformation and mining techniques, DecisionFlow[21] supports an in-depth analysis of a 
heterogeneous multidimensional event sequence at different phrases via rich interactions and flow based visualization 
design. Although powerful, none of these techniques are specifically designed for revealing a care plan in the 
electronic health records. 

2.2 Visualizing medical care planning 

Among many visualization techniques developed for representing electronic health records [22-25], visually 
representing care plans attracts more and more research interests in recent years due to its usefulness for supporting 
clinic process. Most projects dealing with representing care planning are based on flow-chart algorithms, which is 
widely known by physicians and requires minimal learning efforts. For instance, CareVis[4] and AsbruView[3] gives 
visualization solution for large and complex flowchart. GapFlow[1] shows the derivation during different medical 
treatment plans. Most of these techniques take the existing care plans as the input, which are not always available. 
Our work is largely inspired by CareFlow[2], which is designed to assist doctors in finding better care plans based on 
the treatment records. We adopt its visual design to help analyze a group of patients. Different from CareFlow, which 
shows cohorts’ physical outcomes after applying a sequence of treatments, our work improves this design by strictly 
aligning the treatments along a timeline, which help illustrate the combination or correlations among different 
medicines used at the same and different time. 

3. Motivation Problem and Dataset 

Community-acquired pneumonia (CAP) is one of the most common infectious diseases and has been recognized as a 
potentially lethal condition for nearly two centuries[26]. It is also a serious infection that afflicts children throughout 
the world. The average annual incidence of pneumonia in children younger than 5 years of age is 34-40 cases per 1000, 
and is increasing every year, generally becoming the largest killer of children[27]. Symptoms suggestive of pneumonia 
basically include 80 percent of fever combined with respiratory symptoms such as cough, sputum production, pleurisy, 
and dyspnea. The pathogens responsible for community-acquired pneumonia in children mainly includes mycoplasma, 
influenza virus, and bacteria. However, there have been few attempts to devise treatment guidelines in China. 
Guidelines from North America and Europe are not practically useful enough for doctors in China due to different 
infection environment and etiologic process. And the treatment guideline for CAP in China is lack of support of 
population statistics, or slightly out-of-date because of pathogenic variation. Besides, the antibiotic abuse is 
widespread is the medical treatment of CAP in China, which results in greater potential hazards. 

With the above issues in mind, our medical collaborators are interested in analyzing the past clinical cases, in order to 
find care pathways that are mostly used or those anomalous or irrational ones, and their corresponding outcomes. 
Furthermore, doctors also wish to find the proportion of patients for different pathogens and their correlated physical 
signs, as well as physical reactions to different drugs. To address these problems, we are given access to a dataset of 
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nearly 3,000 children patients with pneumonia and with various medical treatments based on nearly 100 types of 
medications. All these patients were hospitalized. The patients’ anonymized information, prognosis results (i.e., 
pathogen types), the full treatment history (e.g., medicines) during the hospitalization, and the monitoring of the 
patients’ body temperatures was also given.  

4. Visualization Design 

In this section, we first present certain design tasks stemmed from our discussion with two doctors. We then provide 
a detailed description of our data aggregation and visual encoding methodology. Finally, we introduce a couple of 
user interactions for data exploration through graph manipulation. 

4.1 Design Tasks 

Clinical CAP physicians are often faced with the difficulty of making precise care plans for different patients.  
Currently, an efficient care plan can only be made by these doctors manually by using their own experiences and 
domain knowledge to bridge the outcomes to the corresponding medical treatments. This procedure is usually 
extremely inefficient and time consuming. Therefore, the doctors expected a tool or even a system which could provide 
references from the existing and similar care plans to support their decision making process. This is especially 
important in China as most of the doctors need to handle hundreds of patients every day.  The doctors are particular 
need a system that can help them automatically integrate the treatment with the outcomes and show existing care plans 
that are related to a focal disease for their reference. They hope this tool can also help to summarize the existing care 
plans so that they can easily identify which one is more efficient in terms of curing the disease. To meet their 
requirements, we compile a list of visualization design tasks as follows. 

T1 Integrating the medical treatments and outcomes of each patient. Both medical treatments and the outcomes 
such as the monitoring results of the body temperatures are recorded independently over time. Therefore, for each 
patient, we need to align different data records based on their timestamps to build a medical care path so as to identify 
the order of medicine being used and corresponding physical sign afterwards. 

T2 Clustering patients with similar medical care paths. In order to proceed care plan comparison and cohort 
analysis, our visualization needs to gather similar paths and show average physical outcomes. In this case, different 
care plans are automatically distinguished, saving the doctors from looking through thousands of individual pathways. 

T3 Revealing the statistical details of each treatment. The statistical details of treatment include the number of 
involved patients and the frequency of a medicine being taken. This helps doctors to quickly differentiate the critical 
care plan for groups of patients and anomalous plans for different patients.  

T4 Associating care plans with pathogens. Finding correlations between the treatments and different pathogens are 
considered to be very important as it will help doctors to make a correct decision at the early stage. Therefore, the 
proposed system should be able to differentiate different pathogens of a focal disease and associate it with different 
care plans. More precisely, the system should be able to illustrate the proportions of patients for each pathogen type 
and their corresponding reaction after taking each treatment. 

T5 Facilitating visual data filtration. Considering the actual care pathways can be chaotic due to the complicated 
situations the doctors may face, the system should enable doctors to filter exceptional cases and explore data through 
interactions in order to reveal the main patterns.  

T6 Easy browsing of raw data. The raw data, such as the name of a medicine, a pathogen type, and specific amount 
of the cohort’s size can help doctors to a better understanding a care plan. Some other features of the patient, such as 
the lab test results, the exact date of hospital admission and discharge can be of great value for doctors to perceive the 
essence beyond the visual representations. Thus the visualization should enable analysts to explore raw data easily. 

4.2 Data Model 

With the above dataset and design tasks, our goal is to find and differentiate care plans 
that are used among groups of patients and compare their outcomes. We approach this 
goal by aggregating all the patient records based on how the treatments are performed. 
Specifically, patients take the same medicines at the same stage (defined by the number 
of days in hospital) are grouped together. Thus the grouping results at different stages 
forming a summary of the treatment history as shown in Figure 1. In this data model, 
nodes indicate medicines and links indicate groups of patients, which have two primary Figure 1.The data model for 

summarizing the care plans 
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attributes: the size of the patient group and the outcome (e.g., body temperature) after taking the previous treatment. 

As a result, the final directed-acyclic-graph captures every existing medical care pathway as well as the number of 
patients flowing through the same sub-paths, and the average body temperature during each time interval. This graph 
serves as the prototype and preparation of our Sankey Diagram implementation.  

4.3 Visual Encoding 

The above data model can be intuitively visualized by a Sankey diagram and the aforementioned tasks guide our 
design of the visual encoding schema. Figure 2 illustrates our visual encoding design. It illustrates (a) the proportion 
of patients taking each medicine at the same time interval, (b) the proportion of patients for each pathogen type, and 
(c) the average body temperature for each time interval after or before a treatment was taken. In particular, this 
visualization consists of several components, which are described as follows: 

Nodes (Treatment): Nodes represent 
treatments and are positioned along the 
horizontal axis indicating treatment 
sequence over time. With different filling 
color representing different kind of 
medicine and the height representing the 
proportion of patients taking a given 
medicine (T3). And the border width of 
each node represents the frequency of this 
medicine being taken in a day. For 
example, as illustrated in Figure 2, there is 
a total of four types of medicine being 
taken during hospitalization, A, B, C and 
D. Medicine A and B are used by large and 
almost equal proportion of patients, while 
medicine D is used by the smallest cohort. 

Layer: The overall view is horizontally 
divided into several layers according to the 
maximum days of hospitalization. Each 
layer represents one day of hospitalization, 
showing the treatment information from 

the first day in the hospital until the last. And the nodes of each layer represent the treatments being taken on that day. 
For example, as shown in Figure 2, the longest hospitalization of this group of patients is three. And for each day, 
there are all four types of medicine being taken. The vertical adjacency relation of each pair of nodes represents the 
correlation between medicines, which was implemented using force-directed layout with back and forward 
propagations. In other words, medicines that are frequently used as combination are more likely to be shown in the 
neighborhood. For example, the position of medicine A and B switches vertically in day 2, probably because the 
amount of people using medicine A and C slightly increases edging out the combination of medicine B and C. 

Edge (Temperature): The edges are colored according to the average body temperature of all patients represented by 
the corresponding source node. Elements that are colored red represents parts of the care plan where patients are in 
the state of fever, whereas elements colored green are care plans where the patients’ body temperature becomes normal. 
The width of edges is correlated with the source nodes and the target nodes, representing the number of patient flows 
through this particular edge. 

Node Encoding: There are two types of filling for each node and doctors can switch one to another through interaction. 
The first is box-plot, which shows the variance of body temperature in the group of patients and to some extent avoids 
the temperature from being balanced through averaging. The box-plot is displayed in a shadowed area with certain 
height, and is visible only when the cohort size reach the threshold in order to maintain its comparability. The other 
filling is the pathogen proportion. Each color represents a type of pathogen and the height is proportional to the number 
of patients (T4). 

  

Figure 2.Nodes represent treatments and are positioned horizontally in 
temporal order. Edges connect treatments in each day and are color-
coded to represent the average body temperature. 
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4.4 User Interactions 

As expressed in our design tasks (T5), user interactions are key to data and pattern exploration. Our visualization 
allows doctors to interactively perform the following actions. 

Highlighting: As shown in Figure 3, doctors can highlight the overlap edges of the corresponding group of patients 
through hovering mouse over an edge, a node or a type of pathogen. This helps doctors to ascertain the actual path 
that the cohort goes through. 

Hovering: Hovering also triggers the display of tooltips which provides the exact name of a type of medicine or 
pathogen as well as the specific number of patients (Figure 3). 

Filtering: Doctors can filter data in two ways. First, doctors can select a cohort of patients and construct a new Sankey 
Diagram through double clicking on edges and nodes. This can help doctors to get a better analysis on the particular 
cohort they are interested in. Second, doctors can use the bidirectional slider to filter both nodes and edges on the 
number of patients to remove small subgroups. The graph will then show only the care plans that are mostly taken by 
removing thin edges and unconcerned nodes. Also the doctors can filter thick edges to observe the exceptional cases. 

Raw data exploration: Doctors can filter the items displayed in raw data list through the filtering box on the top, or 
by clicking an edge or a node to select a cohort of patients. 

Encoding Switching: As described in 4.3, doctors can choose whether to display pathogen information or not. And 
the fillings of the nodes can be changed through the switch on top. 

5. Analysis of Pneumonia Care Plans 

5.1 Domain Expert Interview 

Based on the above visualization design, we demonstrate our system in front of a medical expert team based on a core 
dataset cleaned from the raw data. The medical expert team, led by the director of the department of respiratory disease, 
has rich experiences in both CAP clinical and treatments. The core dataset used for the system evaluation and expert 
interview consists of 953 patient records with a complete using records of 24 types of medicines collected in one year. 
The interview starts with a tutorial covering the visualization design and interactions. We then ask doctors to use the 
system on their own for exploring the core dataset. After a full understanding of the system’s capability, each doctor 
was given a list of questions as the guideline of system evaluation.  Doctors are asked to provide their feedbacks and 
suggestions or raise any questions during the process of using the system. The interview lasted approximately 2 hours. 
We recorded the entire conversation, and took notes of their comments. The rest of the section will give a brief 
summary of doctors’ comments. And we list some of the medical related findings in section 5.2 and doctors’ 
suggestions on system improvement in section 5.3. 

Both doctors are very impressed by the volume of information that the visualization provided. They commented that 
“problems can be displayed intuitively through the view”, and “Comparing to traditional statistical analysis method, 
this aggregates different types of statistics data with more detailed value in each hospitalization day”. Even though 
they mentioned that “since the system provides such huge amount of information, it will take some learning efforts to 
master the use of the system”. However, they believe “this tool can be very convenient and efficient in exploring large 
datasets once you get used to it”. In addition, the first doctor suggested that “we should popularize this system to a 
larger platform in response to the trend of ‘Precision Medicine’”. He also expressed his alacrity of providing more 
data for comparison to see whether the patterns of care plan evolves through years. The second doctor is particularly 
fond of the idea of displaying care plans and all sorts of statistical data in this way. She said, “We used to display 
statistical data in forms of pie charts or histograms. However, this system is much more powerful. It is not only capable 
of displaying multiple types of statistical data integrally, but even the way they change over time.” 

5.2 Preliminary Analysis Result 

In this section, we describe the doctors’ feedback and demonstrate several interesting findings detected by the doctors.  

F1 The system is effective in displaying major care plans. As shown in Figure 3, when the doctor hovers on the 
edge from medicine A (t1) to medicine A(t2), edges from and to medicine B are also highlighted. Considering the 
width of highlighted edges, they found that nearly 50% of the patients taking medicine A at day 2 and 3 are also taking 
medicine B at the same time. In particular, medicine A is Ceftriaxone and medicine B is Azithromycin. The 
combination of Cephalosporin drugs and Azithromycin is a common approach for dealing with children respiratory 
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diseases and works pretty well. The same pattern is also found with medicine C, which is another type of 
Cephalosporin drug.  

F2 Anomalous care plans. The doctors also found several suspicious care plans. For example, as shown in Figure 3, 
medicine B is seldom used. Sometimes a thin edge comes from medicine B, according to our highlight mechanism, 
the doctors found a small group of patients take both medicine A and B at the same time. However, both A and B are 
Cephalosporin drugs, the doctors believed that the mixed used of these medicines are problematic, which worth a 
further inspection of the raw data. 

F3 Verifying statistical results. The doctors are very familiar with the dataset and have already conducted some 
simple statistical analysis and illustrate the results base on pie charts and histogram. The result showed that 31% of 
the patients are taking Cefuroxime (medicine C) while 37.15% of the patients are taking Ceftriaxone (medicine A). 
From the Figure 3, we can see that medicine A and C are used by a large proportion of patients and their heights are 
substantially equal. This fully coincides with the previous statistics. However, our visualization design also shows the 
variety of basic statistics over time, which was preferred by the doctors.  

F4 Revealing the correlation between pathogen and treatments. As illustrated in Figure 4, the doctors switched 
fillings of the nodes into pathogens proportions and they found a large proportion of mycoplasma patients taking 
Cephalosporin drugs. This is a surprising finding as Cephalosporin drugs take no effect in killing mycoplasma viruses. 
This also suggested problematic care plans as many doctors didn’t take pathogens into consideration while making a 
prescriptions and most mycoplasma patients are not taking the right medical care plans at the very beginning. Thus, it 
is not hard to explain why the portion of mycoplasma patients maintain fever until the fourth day of hospitalization, 
while the patients taking Amoxicillin Sodium and Potassium recover in the second and third days (Figure 5). 

F5 Revealing the care path of specific cohorts. The doctors also inspected the treatments used by a small group of 
patients used Meropenem and had extremely high fever and were cured after a long treatment. As shown in Figure 6, 
most patients recovered on the 7th day and one patient was still in the fever. In addition, Meropenem is an advanced 
antibiotic drug, which were only used on patients with very severe symptoms. Thus, this specific cohort must have 
very serious disease and are not easy to recover. 

5.3 Discussion 
Apart from patterns observed in the system, doctors also provide their suggestion on improving the system. First, they 
think it’s necessary to provide filter for doctors to select patients with a certain type of pathogen. Because the symptom 
of pneumonia is very much pathogen-related. Sometimes doctors are more interested in analyzing the features of one 
specific pathogen in order to improve its corresponding care plans. Second, they believe the pre-selection of medicines 
is also needed. Since in most cases, doctors are only interested in a particular group of medicine. For example, during 
the interview, both doctors are very eager to find out the usage of Cephalosporin medicines, however, there are two 
Cephalosporin medicines and the system does not provide medicine selection. Even though they can capture most of 

Figure 3. Overlap edges are highlighted after hovering, showing how the care pathways flow through the 
rest of the graph. Edges between node A and B are also highlighted after hovering the edge from A to A, 
indicating that medicine B are mostly taken along with medicine A. And few edges from medicine C is 
highlighted indicating medicine A and C are usually not taken together. Doctors can refer detailed 
information of the anomalous patient through raw data list on the left by clicking the corresponding edge. 
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the information from the general view, they believe patterns will be revealed more clearly if those two medicines were 
displayed alone. 

6. Conclusion 

In this paper, we presented techniques for representing medical care plans based on Sankey diagram. In our design, 
we aggregate different treatments of a focal disease into a layered directed graph. In this graph, each node represents 
a medicine (i.e., the treatment) and links are used to connect the same medicines used at different time and encode the 
corresponding outcomes (e.g., body temperatures). Our visualization has been used to summarize care plans of 
community-acquired pneumonia based on a patient dataset collected from a children’s hospital in China. Based on the 
visualization, many findings such as anomalous care plans were detected by doctors, which verifies the usefulness of 
the tool. The future work includes proposing advanced algorithm for visual clutter reduction and improving the design 
to illustrate the situation in which multiple medicines are taken. 
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Figure 4. Mycoplasma patients account for a large proportion of each medicine type and usually hospitalize 
with high body temperature. 

Figure 5. Mycoplasma patients taking Amoxicillin Sodium and Potassium turns out to recover faster than 
those taking Cefuroxime comparing to figure 4 due to mycoplasma virus’s immunity to Cephalosporin drugs. 
 

Figure 6. Patients taking Meropenem trends to have extremely high body temperature when hospitalize, and 
take long time to recover. The observation is confirmed by the fact that Meropenem is an advanced type of 
antibiotic and is only taken by patients with very severe symptoms. 
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Visualization for All: The Importance of Creating Data Representations 
Patients Can Use 

Carolyn Petersen, MBI, MS 
Mayo Clinic, Rochester, MN, USA 

Abstract 

Complex medical information and data commonly are presented in a variety of graph, chart, and picture formats. 
Although these presentations perform adequately for health care professionals with medical training, they may be 
incomprehensible to patients, particularly those with low numeracy and/or graph literacy. However, the advent of 
learning health care systems, shared decision making that involving patients, greater emphasis on patient 
engagement, and rising patient advocacy make it essential that patients receive data representations that they can 
use to assess health risks and select treatment. This article describes the growing need for patient-friendly data 
visualizations, reviews what has been reported about patients’ ability to use information presented in various 
formats, and identifies approaches to make data representations that are more useful for patients, their families, and 
caregivers. 

Introduction 

Approaches to data visualization historically have been driven by scientists and academics seeking to communicate 
their work to others with similar backgrounds and training. When the roles of patient and medical practitioner were 
strictly defined and largely separated, these traditional methods of displaying information were effective and 
sufficient for the audience accessing the information. In the evolving medical environment, however, there is a need 
to make health information comprehensible to a broader audience, in particular patients and their family and 
caregivers. 

The need to develop methods that support patient visualization of data is driven by multiple circumstances and 
trends. Within the emerging learning health care systems patients may increasingly face new and potentially 
different therapeutic options than they have been offered in the past. Although the systems will drive this movement, 
patients will be expected to assume greater responsibility for understanding their care options and functioning as a 
part of a continuous feedback loop. The adoption of new treatment protocols may occur more rapidly than in the 
past, and patients may find themselves expected to properly follow disease management programs about which they 
have gained little awareness through consumer publications and social media. Effective patient communication and 
educational aids that clearly illustrate health risks and outcomes will be critical to the success of learning health 
systems. 

At the same time, patients are becoming more interested in learning about their condition and how to manage it and 
seek information to help them do so; nearly three-quarters of Americans have searched the Internet for health 
information1. The availability of tools such as MedlinePlus and Google Scholar offers access to medical information 
that is much more technical than the patient education materials commonly offered by providers, creating a need for 
patients and their families and caregivers to interpret complex information. Too, greater activism by disease-focused 
service organizations and patient-driven advocacy groups has raised patient interest in knowing more about their 
health and making informed decisions about their care. 

In an environment of shared decision making, patients not only need to better understand their health care needs but 
also must be better prepared to follow their providers’ guidance before, during, and after treatment. Patients 
frequently are asked to make decisions about treatments, and the greater the uncertainty about which treatment is 
best, the more likely they will be asked to choose2. Data visualization approaches that are easy to understand by 
patients and their physicians will increase the likelihood that patients make choices with which they are satisfied in 
both the short and long term. 

Improved quality of care and more desirable outcomes have been a goal of both patients and providers for many 
years3, and facilitation of greater patient engagement is a key driver of both quality and outcomes. Furthermore, 
researchers have an ethical obligation to maximize the value of data given by patients4. Sharing the information 
gleaned from that data in formats readily understood by other patients is one way researchers can ensure that this 
responsibility is met. 
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Data Visualization among Patients: The Current State 

Much of the complex risk and outcomes data patients need to understand comes from peer-reviewed journals, 
medical meeting presentations, health system-developed materials, and direct-to-consumer advertising. Journal 
articles and medical presentations typically include data in such forms as Kaplan-Meier curves, forest plots, funnel 
plots, violin plots, waterfall plots, spider plots, swimmer plots, heatmaps, and circos plots5, but these representations 
often are unfamiliar and prove challenging for patients and caregivers to interpret. Newer formats such as network 
analysis diagrams and transit map diagrams also may be difficult for lay users to understand. Lacking a clear, 
meaningful expression of data, patients may struggle to use the information effectively in managing their health, 
particularly if they lack adequate health literacy6. New approaches to data visualization can support greater patient 
engagement and, as a result, improvements in health outcomes. 

The ability of patients to understand health information encompasses multiple skill sets including health literacy, 
numeracy, and graph literacy (sometimes referred to as graphicacy). Literacy involves the ability to comprehend 
information presented in text, while numeracy refers to the ability to interpret data presented in numbers. Graph 
literacy is the ability to understand present information in the form of sketches, photographs, diagrams, maps, plans, 
charts, graphs, and other nontextual, two-dimensional formats7. Graph comprehension involves three skills: 
information extraction, information interpolation and interpretation, and information extrapolation and analysis8. 

Within the health communications field, researchers have focused primarily on concerns related to health literacy 
and, to a lesser degree, on health numeracy. Graph literacy has been recognized as a separate skill, but has received 
relatively little attention. Tools commonly used to assess the readability of health information such as the Flesch 
Reading Ease Readability formula9 do not take into account features specific to health writing, such as a higher 
presence of technical terms not common to everyday English, rendering these tools unsuitable for use in designing 
and assessing visual data representations. The Centers for Medicare and Medicaid Services highlights this deficiency 
in its toolkit for developing clear written materials, cautioning developers against relying on readability scores when 
determining how easily readers can interpret health information10. Another health information assessment tool, the 
Centers for Disease Control and Prevention’s Clear Communication Index, has been used successfully to evaluate 
health information infrastructure such as patient portals11, but also does not address graph literacy. 

Numeracy skill may offer some reflection of patients’ ability to understand graphical representations of health 
information, but it is unclear whether numeracy can reliably predict graph literacy. In a study in which highly 
literate participants interpreted graphs depicting breast cancer risk, made hypothetical decisions about treatment, and 
indicated preferences for graph format among line, horizontal bar, vertical bar, and iconic graphs, numeracy 
predicted graph literacy12. In another study in which prostate cancer patients performed similar tasks, numeracy and 
graph literacy were not highly correlated (r = 0.37)13. Within the low-literacy subgroup of participants in this 
investigation, graph literacy was more closely correlated (r = 0.59-0.90) with the ability to interpret information in a 
dashboard format. These studies support earlier work suggesting that less numerate individuals may be less able to 
interpret graphs14, but other work comparing representations of likelihood in various numerical formats suggested 
that graphs may be helpful in conveying risk to individuals with low numeracy15,16. 

Though graphs have sometimes been used as a strategy to circumvent the challenge of communicating to people 
with low health literacy, graphs are not necessarily intuitive and may not be more easily interpreted17 or result in a 
greater understanding of health risk when individuals’ understanding of risk is accurate prior to viewing a graph18. 
The format of data presentation, including the use of color and icons, the quantity and placement of text and 
numbers, the relative size of elements within information, and the quantity of information provided also influence 
how easily patients and consumers comprehend and use information in health decision making. Presentation formats 
that reduce the cognitive load on users by limiting the number of visual elements and highlighting the most 
important details improve users’ ability to interpret data regardless of health literacy skill and socioeconomic 
background19. 

Infographics, also known as pictographs, are an increasingly popular approach to data representation, and their 
appropriate use can enhance consumer awareness and understanding of health-related concerns20. An effective 
infographic draws attention to comprehendible information and narrows the chasm between medical professionals 
and consumers/patients21. Previous investigators have reported pictographs to be the best format for communicating 
probabilistic information to patients when patients and their providers make decisions together22, but because 
pictographs also have been associated with conveyance of relatively straightforward information, they may fail to 
convey highly nuanced health information. 
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Visualizing the Future 

The design and accuracy deficiencies of mobile health (mHealth) tools as a class of devices have been described23, 
and investigations of individual apps and class of apps also note these problems. A clinical trial evaluating a 
smartphone app marketed as a tool for consumer sleep monitoring found no correlation between the app’s readings 
and readings simultaneously taken during in-laboratory polysomnography24. In a review of 28 of the top 200 free 
and for-pay apps in the “health and fitness” category of Google Play and iTunes, the usability score averaged 13.5 of 
20, indicating that some of the apps offered little benefit to users25. Quality testing of apps for prevention of driving 
after drinking26, pregnancy prevention27, and other health-related tasks yields similar results. 

Fortunately, skillful data visualization offers the potential to avoid these pitfalls. An approach involving multiple 
user-centered design methods including focus groups, participatory design sessions, and usability evaluation for 
mHealth applications offers one, though not the only, way forward28. Use of an iterative approach not only 
facilitates a comprehensive assessment of user needs, but also allows patients to describe in their own words what 
confuses them and whether subsequent designs make data more accessible. Too, use of an iterative approach 
supports development of a data visualization form that has undergone usability testing and refinement, thereby 
increasing the likelihood of adoption by patients as well as clinicians. 

Incorporating the findings of communication research into a single or small number of formats for data presentation 
may seem to be an onerous task. One path to success may involve creating familiar graphical displays that allow 
patients to put to work existing skills, rather than attempting to design data presentations and interfaces based on 
what people say they like about existing formats13. Graphs tend to be more complex than infographics, drawing 
upon a broader and more developed set of analytical skills than those needed to comprehend the content of 
illustrations. Creation of graphs using the design principles on which infographics and other less complex images 
(e.g., furniture assembly instructions) are based merits further exploration. 

Patient-provider communication also plays a critical role with regard to shared decision making. Patients’ 
comprehension and ability to participate in treatment and care management increases when patients and their 
providers engage together with the information, in particular when the meaning of numbers such as lab results are 
involved29. Effective data representations will make it easier for provides to share complex information with their 
patients, and a commitment to these important conversations will create an environment in which care can become a 
partnership with improved outcomes as its result. 

The growing interest in methods of data visualization that permit new formats and support interactivity30,31 provides 
an opportunity to develop visualization approaches that also facilitate patient education and engagement. For 
example, a tool developed by Weissgerber and colleagues allows users to build interactive line graphs by manually 
entering data or uploading .csv files32. The resulting graphs may be viewed, saved, and downloaded as users require. 
This ability to enter data and observe changes may be particularly attractive to users who collect data through 
wearables, in-home sensors, or other devices. 

Within the field of patient education, data visualizations often occur within the broader context of decision aids, 
which combine text, numerical, and graphical elements to help patients answer a particular question, such as “What 
treatment is most effective for my condition?” Although some work considers specific elements, such as a study 
assessing how patients with low literacy interpreted quantitative risk presented in different graph formats33, most 
evaluation studies of decision aids tend to investigate the effectiveness of the aids as a whole rather than the efficacy 
of specific elements within the decision aid. Development of research designs that isolate patients’ engagement with 
and understanding of charts and infographics will help patient education professionals develop data visualizations 
that more effectively communicate complicated information. 

In the online environment, dynamic interfaces that present data in different formats depending on the user’s role 
(e.g., clinicians, patients) offer another opportunity to facilitate patient understanding and medical decision making. 
In one implementation within an electronic medical record, the addition of a presentation layer within the graphical 
user interface permitted data display that performed desirably for physicians and patients34. Both groups were able to 
achieve high performance with the interface during usability testing, and the EHR-based implementation reduced 
operation time compared to other EHRs and paper-based processes. The dynamic interface approach also allows 
each user group to view a level of detail suitable to its needs, a key requirement for data visualizations that will be 
used by multiple audiences. 

The simplest and most straightforward approach, however, may be the one that directly solicits patient feedback in 
the design and refinement of data visualizations and overall information presentation. Though not used uniformly 
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across the field of patient education, the collection and analysis of user feedback has precedent within the online 
information environment. Within the realm of health information, the value of qualitative input from users has been 
understood and practiced for some time35. For example, patient feedback related to a Web site providing information 
about stereotactic ablative radiotherapy helped Web developers redesign the site such that patients were better able 
to understand scientific evidence, among other improvements36. Though some data visualizations may be more 
complex than the health information available on many consumer-focused Web sites, such studies indicate the 
importance of engaging users in design of data representations. 

 

Conclusion 

The development of forms of data representations that are more accessible to patients and their caregivers supports 
many goals providers and health care organizations are working to achieve. Visual data presentations can help 
patients enhance their understanding of their health, make more informed decisions about which they feel better in 
the short and long terms, contribute to improvements in quality of care and health outcomes (theirs and others’), and 
become active participants in learning health care systems. Visual data representations that are meaningful to 
patients, caregivers, and the health care professionals who care for them support patient engagement and facilitate 
patient-centered care, and their development should be a goal of the health care system. 
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Abstract

Electronic Health Record (EHR) data has multiplied over the past decade, resulting in petabytes of longitudinal data
available for analysis. Many visualizations and systems have been built to analyze this large, complex data, but few
have been able to assist clinicians by supporting their analytical thought process and the methods in which they prefer
to manipulate and filter a dataset. Through interactions and case studies with providers, we have identified and present
in this paper the top filters that are clinically relevant and should be considered for when building visualizations that
support longitudinal healthcare data.

1 Introduction

The adoption of EHR systems has multiplied over the past decade, leading to millions of patient records being con-
verted to digital form and resulting in petabytes of data available for analysis. While this conversion has increased
the availability of both patient and population level data, it has itself lead to an over saturation of information for
healthcare providers1–3. In particular, providers now face the challenge of developing temporal understanding of their
patients’ histories and diagnoses.

While systems have been developed for analyzing large, complex clinical data, clinicians can become frustrated by
those that do not allow them to customize their experience to fit their thought process. Compared to many other
domains, clinical care providers have developed mental shortcuts and preferred strategies for analyzing their data4.
Thus, an approach that is able to cater to clinicians’ needs and simulate their thought process has the potential for wide
spread adoption and improved analytical performance.

In this paper we present visualization filters developed through interactions and case studies with providers, which
should be utilized when building visualizations and exploration systems. These filters allow clinicians to analyze
different facets of a dataset, as well as reduce the amount of data visible for analysis so clinicians do not become
burdened with the amount of information displayed. We provide an overview of existing systems and visualizations
before presenting our filters in Section 3, showing how the effectiveness of visualizations and systems can be improved
through the use of our clinically relevant filters.

2 Background

Many analytical systems built for large, complex data analysis were designed for use in domains other than healthcare
and then later re-purposed to be used in the clinical setting. While these systems have shown promise in their original
domains2;5, they have not translated well to the clinical realm where providers require specially crafted analytical
techniques and tools that cater to their unique clinical thought process. Specifically, basic event filters leveraged by
these systems do not account for the large number of variables needed for clinical event analysis and do not account for
the varying thought processes of different clinicians. Thus, these systems lack the flexibility necessary to be clinically
applicable and lead to low adoption rate across the clinical spectrum.

Furthermore, there have been visualizations and systems that have been built specifically for the clinical domain,
most notably CareFlow6, DecisionFlow7, OutFlow8, and Frequence9 in which the popular sankey diagram (example
provided in Figure 1) has been utilized to visually display the various pathways and outcomes that a patient may
undergo. While these systems have produced effective visualizations, they lack the power and flexibility for clinicians

1The views expressed in this paper are those of the authors and do not reflect the official policy of the Department of Army/Navy/Air Force,
Department of Defense, or U.S. Government.
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Figure 1: An example of a sankey di-
agram that is commonly used in visu-
alization systems.

Figure 2: Chord diagrams are utilized
to view relationships between a start-
ing condition and potentially multiple
end points.

Figure 3: A windrose is tradition-
ally utilized in climatology, but can
be leveraged in other domains to show
relative frequency across ordered cat-
egories.

to filter and augment the dataset being displayed leading to an over-saturation of data and poor understanding of the
underlying dataset.

In our own previous work, we too have developed a visualization system, VisXplore, for analyzing complex clinical
datasets10. In VisXplore, the clinician is presented with various visualizations to be able to understand their data from
a variety of angles. With this paper, we seek to expand our system and provide the clinician with even more control
and customizability. In addition to the sankey diagram utilized by many existing visualization systems, our VisXplore
system includes many different visualizations such as:

• Chord: as can be seen in Figure 2 where the clinician is able to analyze the correlation and relationship between
various variables, events, and/or diagnoses.

• Windrose: as can be seen in Figure 3 where each patient can be plotted against eachother and the shapes of
both plots can be utilized for a general overview of both patients.

3 Clinical Filters

While our system, VisXplore, and other various systems have embedded visualizations that were constructed to pro-
vide meaningful information to the user, clinicians require tools that allow them to manipulate and filter the dataset
being displayed. Such functionality makes understanding and interpetation easier, thus allowing for greater analytical
accuracy and adoption. A truly effective visualization systems needs to possess filtering tools that allow users to alter
the dataset being displayed, as well as provide clinicians with the ability to reduce the amount of noise and only present
information pertinent to that clinician. Therefore, through interactions and case studies with clinicians in which , we
have identified a set of clinically relevant filters that allow a provider to analyze a dataset with the same mental short-
cuts that they have developed over time. While the set of possible filters may be very large, we will present the top
four filters that providers have communicated as being the most important and relevant to their analytical needs.

The primary task surrounding the filters that we will discuss revolves around analyzing a specific time interval of data,
or what we refer to as “timeframe analysis”. In Figure 4, we can see the filtering toolbox presented to clinicians with
four tabs of interest: Timeframe, Conditions, Dependencies, and Encounters.

3.1 Timeframe

The timeframe tab was built to allow for providers to analyze only a specific “frame of time” for each patient, thus
limiting the amount of data presented to only a subset of data available.

The content of this tab is shown in Figure 4 where it allows the provider to align their dataset on an event and select
a specific time interval. Alignment on an event has been accomplished in other systems5, but paired with the feature
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Figure 4: Our clinical-based filter toolbox. In the Timeframe tab, the clinician is able to align their dataset on a specific
occurrence of an event in each sequence and then select the timeframe/time interval that they would like to analyze.

Figure 5: In the Condition tab, the clinician is able to add specific filters for multiple time intervals. In this specific
example, the provider selected the events that must occur and must not occur in the 30 days prior to the first event of
NONskullfracture in the aligned dataset.

of selecting a time interval providers can analyze their data at different points in time. This method of filtering allows
for users to look at various behaviors (i.e. only 30 days after the first time an event “A” occurred) and is particularly
relevant if a provider is evaluating a patient and utilizes the visualization to better understand the patients potential
path in a certain period of time.

3.2 Conditions

Next, Figure 5 contains the content in the Conditions tab where providers are able to define an unlimited number of
conditions for the data. A condition is a constraint within a specific time interval defined by diagnoses that must be
included or must not be included within the interval. When a clinician sets a condition, the dataset is filtered such
that only sequences in the time interval that have or do not have certain diagnoses are shown. This method of filtering
allows for only specific sections of the dataset to be filtered at a time as well as assist in cohort comparison. For
example, a provider could be analyzing a dataset of patients that have developed cancer and then they could limit the
display to only show those patients that suffered from headaches prior to being diagnosed with cancer. Furthermore, a
provider could then perform cohort comparison to analyze the difference between the group of patients that suffered
from headaches and those that did not. This filter provides multiple avenues for analysis and allows clinicians to
customize based on their specific tasks (i.e. population analysis vs. single patient treatment).

3.3 Dependencies

The third filter in our toolbox is shown in Figure 6 where it allows the provider to apply an unlimited number of
“dependency filters”. Each dependency filter consists of the type of inclusion (can or must), the source event(s),
and the target event; such that for each dependency the provider intends to only look at sequences where the patient
possessed an encounter of either one (can) or all (must) source events prior to developing the target diagnosis. This
filter is different from that of the conditions filter as it functions independent of time and provides a connection between
two or more diagnoses and through the use of this filter, providers are able to identify patients that were diagnosed
with certain diagnoses, regardless of the time filter, and then develop another diagnosis of interest.

As an example, for the case presented in Figure 6: B,D ! PTSD, the dependency filter would look at each
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Figure 6: In the Dependencies tab, a clinician may filter based on events that supercede another event in a specific
“dependency”. In this example. provider selected that the diagnoses should contain B,D ! PTSD where for
each sequence in the dataset: either the event B or D must be in the sequence and PTSD must exist after the first
occurrences of B and D.

Figure 7: In the Encounters tab, the provider is able to only view encounters by the specialty that the encounter was
classified under or identify the diagnoses that they are interested in to apply our clinical-based weighting formula.

sequence/patient in the dataset individually and identify the first occurrence of B and the first occurrence of D. Then
it would identify which diagnosis occurred later and using its timestamp it would identify if the diagnosis PTSD
occurred after the timestamp. If the diagnosis PTSD does not exist after the corresponding timestamp then the
sequence would be removed from the dataset and not be presented for analysis. In addition, if both B and D do
not exist in the sequence the sequence would also be removed. The filter has the ability to allow providers to specify
different inclusion criteria including “can” or “must” include, where “can” corresponds to at least one source diagnosis
must be present and “must” corresponds to all source diagnoses needing to be present. This additional functionality
allows providers the flexibility to specify how rigid they desire the filter to be. Therefore, the dependency filter
provides the flexibility needed to create a customized picture of a population (potentially similar to the one of a patient
at bedside) and draw specific conclusions for this very specific cohort.

3.4 Encounters

The fourth filter incorporates a weighting formula described below which allows for dynamic adjustment to the graph,
as shown in Figure 7. In this tab, the provider is able to both filter the type of encounters shown based on a particular
specialty as well as turn on a specially designed weighting formula that alters the visualization being displayed to
highlight the information that is pertinent to that provider.

Here, the provider is able to completely filter all encounters such that only the encounters performed by a provider of a
specific specialty will be shown. This method allows for a provider to analyze only events of providers with specialties
similar to their own and remove any diagnoses that may not be considered relevant. As an alternative, providers have
the option of allowing the weighting algorithm, which will be described below, to highlight appropriate information,
thereby causing the opacity of each part of the visualization to be set based on its relative importance. Both of these
options serve to de-clutter the visualization and present providers with only relevant information needed for population
understanding.

3.4.1 Weighting Formula

To draw attention to the important aspects of the graph, we sought to develop a weighting formula that could determine
which aspects of a visualization should be highlighted for a specific provider. The formula was constructed by recog-
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Figure 8: An example of a sankey di-
agram that is commonly used in visu-
alization systems.

Figure 9: Chord diagrams are utilized
to view relationships between a start-
ing condition and potentially multiple
end points.

Figure 10: A windrose is tradition-
ally utilized in climatology, but can
be leveraged in other domains to show
relative frequency across ordered cat-
egories.

nizing that, for longitudinal data, each provider is interested in: (a) diagnoses that are related to their discipline, (b) the
temporal positioning of each diagnosis, and (c) the presence of certain conditions that a patient experienced. With this
knowledge of provider interest, our formula is able to assist in highlighting the features of interest in a visualization
by changing the opacity of each aspect of a visualization such that those that are less opaque (more transparent) are
less important, while those that are more opaque (less transparent) are more important and of interest to the provider.

Prior to executing our formula, a provider would be required to provide a preference list in which they sort the diag-
noses in order of their preference to analyze. Diagnoses at the beginning of the list are of greater interest and those
at the end of the list are of less interest. However, when discussing this procedure with providers we recognized that
requiring individual providers to do this at the initiation of the visualization would cause excessive burden and be an
impediment to adoption. Thus, we surveyed providers from different specialties to understand how likely they were
to utilize each diagnosis in their clinical decision making. Providers ranked each diagnosis/event type in order from
most helpful to least helpful. The consensus rankings were stored for each specialty which could then be read from
the provider’s credentials each time the visualization was initialized.

While the provider does not need to specify a preference list as we built a consensus list for each specialty, the provider
is required to indicate if there are any diagnoses that are of particular interest to them, such as if they are wanting to
analyze all patients’ pathways to developing PTSD. This could change between each time a provider accesses the
visualization, thus the selection must be completed each time and can be seen in Figure 7 where the provider is
presented with a dropdown for “Interest List”.

With the preference and interest lists provided, we determined the opacity of each diagnosis through our weighting
formula:

Opacity = 1� �1(R)� �2(E)� �3(PE)� �4(P ) (1)

where R is the index of the diagnosis in the providers preference list (such that a lower index is more preferred), E is
the binary indication of if the diagnosis is contained within the interest list, PE is the current diagnosis’ distance from
a node of interest (if it is not the node of interest), and P is the diagnosis’ overall position in the sequence of events.
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E, and thus PE, are derived from the provider input to the visualization; and P serves the purpose of adjusting all
diagnoses to highlight the first diagnosis in the sequence.

While the weighting formula can be applied to any visualization, we show the effect of our weighting formula on the
three visualizations that we showed in Section 2 in Figures 8, 9, and 10 where the original, unweighted visualizations
are shown directly above the new visualization after applying our weighting formula. By comparing the weighted
visualizations to the original visualiations, we can see that the provider’s attention is now drawn to the nodes of
interest in them. The amount of information is not overpowering, but all detail is available should a provider desire it.
This allows for maximum flexibility of a visualization while maintaining its integrity and usability.

4 Conclusion

In this paper, we presented the top four clinically relevant filters that we have identified as being necessary for consid-
eration when designing visualizations and visualization systems. These filters coincide with the thought process that
clinicians follow as well as provide the ability to be able to manipulate and filter longitudinal EHR data effectively.
With these filters, it can be seen that a visualization designed for use by clinicians requires direct input from the user
to ensure that it follows their thought process. This shows that work from other domains and fields cannot be directly
translated into the clinical setting, and that tools and techniques need to be specially constructed for clinical use.

With these filters that we have identified we look forward to integrating these filters into our VisXplore system and
for the usefulness of these clinically relevant filters to be present across a variety of visualizations and systems in the
clinical domain.
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Abstract 

The American Medical Informatics Association (AMIA) Visual Analytics Working Group (VIS WG) established a 
Task Force on Evaluation (TFoE) in early 2016 to investigate the state-of-the-art in visual analytics evaluation and 
to provide a report documenting recommendations for visual analytics evaluation within the context of the medical 
informatics domain.  This progress report documents the history of this task force, including its mandate and 
membership.  This report also provides a brief summary of progress made so far, outlines future plans, and 
describes how additional members of the community can participate. 

 

1. Introduction 

The healthcare domain has long been a data-driven enterprise.  From point-of-care decisions made by clinicians 
based on a patient’s medical history, to longitudinal population studies that provide evidence for clinical practice 
guidelines (CPG), to individuals monitoring their own health through patient-generated health data (PGHD), the 
collection, organization, and utilization of information is at the center of nearly every aspect of modern medicine.  
This was the case in the era of paper charts, and continues as both the collection and utilization of data in medical 
practice has accelerated during the industry’s shift toward a more digital and modern health IT infrastructure.  For 
example, in the United States, the Office of the National Coordinator for Health Information Technology now 
reports that 96% of hospitals have an electronic health record system (EHR).1 Reports suggest similar percentages of 
hospitals making progress toward meaningful use standards,2 a set of criteria designed to access the capture and use 
of clinical data from EHR systems to improve quality, safety, and efficiency. 

This ongoing digital transformation is producing large amounts of digital data, and is sparking a broad range of 
research and development aimed at enabling new data-driven methods for improving the healthcare system.  One 
critical aspect of this wave of innovation has been in the design and development of effective ways to communicate 
data that can ultimately generate new knowledge and enable more insightful actions.  Both the medical informatics 
and visualization research communities have recognized the growing importance of this challenge and have 
identified visual analytics as a critical area for technological innovation.3,4  Visual analytics technologies support 
analytical reasoning about complex and large scale datasets using a combination of interactive visualization-based 
user interfaces and computational analysis.  As such, these methods have the potential to help make data more 
interpretable and actionable for a range of healthcare user populations: from clinicians, to population health analysts, 
to patients, and to their caregivers and families. 

However, despite the great promise of visual analytics to support more effective data analysis and decision making, 
it can be challenging to evaluate the benefits that a specific technology provides.  This difficulty is recognized 
within the visualization community,5 but is an even more critical hurdle in medical informatics applications where 
technologies must be rigorously proven before they can be widely adopted.  

In early 2016, the American Medical Informatics Association (AMIA) Visual Analytics Working Group (VIS WG) 
established a Task Force on Evaluation (TFoE) to investigate the state-of-the-art in visual analytics evaluation and to 
provide a report documenting recommendations for visual analytics evaluation within the context of the medical 
informatics domain.  This paper provides the history of the TFoE, describes its mandate and composition, and 
summarizes both its progress to date and future plans. 
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2. The Creation of a Task Force on Evaluation 

Reflecting a growing interest in applying advances in visual analytics to the medical domain, the annual Visual 
Analytics in Healthcare Workshop6 will be held for the seventh time this year. The workshop first took place in 
2010 and has been held annually since then at either the AMIA Annual Symposium or the IEEE VIS Conference, 
reflecting the interdisciplinary nature of the topic. The emerging community fostered by this event was recognized 
by AMIA in 2015 with the establishment of the official VIS WG.  

The VIS WG held its first annual meeting at the 2015 AMIA Annual Symposium.  During the annual meeting, 
attendees were asked to suggest potential activities for the VIS WG to organize in its first year.  One topic that 
resonated broadly during that discussion was the need to address best practices for evaluation of new technologies.  
The group recognized the both (1) the fundamental difficulty of evaluating visualization technologies, and (2) the 
critical importance of evaluation given the medical context of our work.  

At the conclusion of those discussions, it was recommended that the VIS WG establish a task force to survey the 
state-of-the art in this area, and to recommend best practices for evaluation of visual analytics research within the 
medical informatics domain.  The TFoE would be charged with developing a report to document its findings, with 
this article serving as an interim progress report. 

Following the annual meeting, the VIS WG distributed a call for volunteers via both the AMIA VIS WG mailing list 
(restricted to AMIA members) and the VAHC email list6 (representing a broader and more diverse community). All 
interested parties were invited to join the TFoE’s first conference call on February 5th, and a total of 16 people called 
in to participate.  Over subsequent month meetings, a group of seven people (all authors on this report) emerged as 
the core contributors to the task force: David Gotz (chair), David Borland, Jesus Caban, Dawn Dowding, Brian 
Fisher, Vadim Kagan, and Danny Wu.  This team has broad representation, with members from industry, 
government, and academia. 

 

3. Progress to Date 

In this section we summarize the TFoE’s preliminary results. Over the course of monthly meetings, beginning in 
February, the TFoE has engaged in two major threads of activity: an interdisciplinary literature review, and the 
development of a framework for characterizing evaluation methods specifically within the medical informatics 
domain. 

 

3.1 Literature Review. We have identified three general domains that should be considered when studying 
evaluation techniques relevant to medical informatics: “traditional” visualization, health IT, and cognitive 
psychology.  

Traditional Visualization. Evaluation in the visualization literature often involves user studies in which quantitative 
measures such as speed and accuracy are measured for specific visual representations. However, other evaluations 
techniques such as long-term case studies are also commonly employed. There are many examples in the literature 
discussing the unique challenges of visualization evaluation, the range of both quantitative and qualitative 
approaches that can be employed, and the relative strengths and weaknesses of those techniques.5,7–10 Examples 
which apply some of these visualization evaluation methods within the medical informatics domain have also been 
described.11,12 

Health IT. Within the health IT discipline, systems are typically viewed as comprised of several interacting 
components (e.g., the content of the system, the user interface, and the hardware on which an intervention is 
delivered), which are in turn implemented within larger equally complex systems (e.g., interacting health care 
organizations).  This multi-layered systemic complexity makes the evaluation of health IT systems an enormously 
complex problem, with challenges including the identification of how the different components of the intervention 
(the health IT system) interact to produce outcomes, and the causal pathways or mechanisms by which they achieve 
those outcomes. The literature in this field has addressed these issues in various ways, many of which can be applied 
to visualization-based systems.  For example, the Medical Research Council (MRC) framework for complex 
interventions provides an overview of the process by which an intervention can be developed and then evaluated.13 
More broadly, many have proposed models that consider ways to evaluate the effect of health IT system on 
outcomes, while taking into account the complexity of the context in which they are implemented.14–21 Finally, 
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recent work exploring so-called “realist evaluation” methods have focused even more directly on evaluations based 
on understanding the interactions between (1) the context (the situation and factors where an intervention is 
implemented), (2) the mechanism (through which an intervention is thought to change behavior or other factors), 
and (3) the clinical outcome.22,23 

Cognitive Psychology. One approach to dealing with the complexity of evaluation is to develop analytic methods 
that seek out regularities in cognitive task performance. These begin with aspects of human information processing 
that are said to be "architectural" in the sense that they are consistent across individuals and over time for a given 
individual. Many of these human capabilities, such as trichromacy, and scope of verbal short-term memory, are 
well-known to the human-computer interaction (HCI) community.24,25 Others, such as the number and processing of 
attentional tokens (Pylyshyn's FINSTs26) are less commonly understood. As data displays become more complex 
and dynamic we may find that the psychological underpinnings of traditional HCI methods must be augmented by 
aspects of human cognitive architecture that are only now being investigated in the cognitive science and 
psychology communities.27 One way to do this is for a cognitive psychologist to closely examine a video screen 
capture of the interface in use, looking for potential threats to human cognitive architecture. This draws from "close 
reading" methods used in the humanities, but is intended to understand the interaction of human cognitive 
architecture with the unusual perceptual situations generated by modern display environments. From this 
examination a laboratory study can be constructed that can evaluate whether those threats are real. For example, an 
examination of a proposed Next-Gen air traffic control interface generated a set of psychology studies that evaluated 
whether changes in viewer position in a moving-target display would adversely affect air traffic controllers' ability 
to track individual aircraft using the new interface approach.28 
 
Not all cognitive task regularities are architectural. Many differ between individuals due to their individual 
capabilities. Laboratory studies of individual differences in performance may find patterns of behavior that are 
consistent for that individual but differ between individuals. Investigation of these patterns may lead to a "personal 
equation of interaction" which might enable an interface to be adapted to a given user's cognitive abilities as well as 
to their preferences.29 As with the cognitive architecture work, this also generates quantitative measures, however in 
this case the tests are done entirely within subjects with an eye towards evaluating consistency of performance for a 
given individual in the task environment. Such methods may be especially germane to the medical informatics 
domain, in which many individuals with diverse backgrounds (e.g., patients, nurses, doctors) may interact with the 
same data in different ways. 
 
Both cognitive architecture and individual difference studies fall along the X axis in Figure 1, quantitative 
measurements. While they may begin with examination of rich data (e.g. a screen capture video) the goal is to move 
to the laboratory for quantitative studies. If we are to address the Y axis of realism from a cognitive perspective we 
must find ways of building theory from rich data more directly. To address the qualitative Y axis in figure 1 we refer 
to the work of social scientists whose qualitative ethnographic research methods have been applied to examine 
organizational processes. Cognitive ethnography  constitutes a special case in that it bridges ethnographic methods 
and cognitive task performance.30 These approaches emerged from a new perspective in cognitive science that views 
cognition as a product of interaction of mental activities and information from the environment, often in the form of 
cognitive artifacts such as notation systems and visualization.31,32 This labor-intensive method requires trained video 
analysts supported by software designed specifically for analysis of sociotechnical systems.33 

The greatest challenge in our attempt to understand medical information systems lies along the diagonal in figure 1, 
where we examine how systems that include one or more human agents interact with the rich sensory environments 
that visual information systems can provide. While this is a new frontier, some progress is being made through the 
use of mixed-methods such as field experiments that manipulate some aspects of a complex task that is conducted in 
a realistic environment. Traditional social science methods such as grounded theory can be used here, and hybrid 
cognitive science approaches utilizing large-scale framework theories such as Clark's Joint Activity Theory are 
being developed.34–38 

Effort on the literature review continues, however it has already proven fruitful in helping us form an organizational 
framework for evaluation. 

3.2 Framework.  The task force has developed and is continually improving a framework to organize the findings 
from the selected publications (Figure 1 (left)). In this two-dimensional framework, each publication can be 
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positioned based on the degree of its quantitative measures and its realism of settings and tasks. For example, a 
longitudinal study using highly quantitative measures will be placed on the top-right corner and regarded as an 
outcome study. The space can be divided into four regions, enabling the framework to categorize publications into 
four broad groups: initial prototypes, task-based time and error studies, longitudinal case studies, and outcome 
studies.  These categories can be characterized based on (1) the degree of quantitative measurements and (2) the 
realism of the study tasks and environment.  All four groups provide are valuable perspectives on evaluation and can 
give new insight about the frequency of studies that combine both quantitative rigor and realistic settings and tasks.  
The results from this study will be crucial for determining which areas of visual analytics in healthcare require more 
attention and are worthy of the investment in time and resources. 

Figure 1(right) shows some of our preliminary results after reviewing 23 papers that introduce a visualization 
framework to explore clinical data.   Each paper was reviewed and received a 0-5 score for the level of qualitative 
and quantitative evaluations that was performed.  The size of the circles in Figure 1(right) represents the number of 
papers that received a specific score.   Preliminary results show that a significant amount of papers describe a system 
and use some sort of qualitative measure to describe the benefits of the tool without providing detailed quantitative 
scores.  It was encouraging to see that 21.7% of the papers have a balanced approach to describe and validate their 
frameworks as illustrated by the 2/2 and 4/4 scores. 

 

 
 

Figure 1.  (left) A framework for characterizing the space of possible evaluations.  The two key dimensions include 
the clinical realism of the evaluation (the Y axis) and the level of quantifiable evidence gathered (the X axis).  (right) 
Preliminary results after reviewing 23 papers that introduce and validate a visualization framework to explore 
clinical data.    

 

 

4. Future Agenda and Opportunities to Participate 

In the first eight months of its existence, the AMIA VIS WG TFoE established the general framework for collecting 
and evaluating both existing and developing approaches for the visualization of health-related information. The 
efforts of the TFoE, however, are far from complete and there are many opportunities for members of the 
community to contribute to TFoE’s efforts going forward.  

One of the most critical items is the completion of the literature review–thus building the foundation for the 
remaining TFoE tasks. While the team has identified several publications in its early work, the universally accepted 
importance of visualization methodologies ensures that the universe of relevant publications is much larger.  The 
core team would like to see participants from across different fields contribute to the growing collection and 
organization of relevant literature. Moreover, as we have started with our work on the interactive visualization of our 
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evaluation framework and related literature, possibilities exist for the development of tools to help gather, organize, 
and communicate TFoE findings.  For example, there is the potential to explore automated methods which use 
modern data-mining platforms, such as Stanford Deep Dive,40 to help identify new relevant publications as they 
become available as part of a dynamically updated repository. 

Concurrently with the literature review, recommendations for best practices in terms of evaluation procedures must 
be developed in alignment with the framework being established by the Task Force. The creation of standard criteria 
and the corresponding guidelines for when certain methods are most appropriate will be an important step toward 
establishing a “gold standard” for evaluation activities when conducting visual analytics research in the healthcare 
domain. 

In order to achieve wider visibility and to facilitate engagement of researchers and industry experts beyond the core 
community, the TFoE is planning to develop a public web site where up-to-date reports, tasks and challenges will be 
available for the general public to review. In addition to these documents, the website will contain the previously 
described interactive visualization of how existing identified literature fits within the proposed evaluation 
framework, and the planned best practices recommendations. This will be a critical tool in disseminating the results 
and collecting feedback from the community.  

While this paper represents an update on the work in progress, a more comprehensive formal report covering the 
TFoE activities is planned for the future. However, as described above, much work remains to be done before such a 
report can be produced.  All members of the broader VAHC community are invited to join the task force and to 
contribute to its ongoing work.   Those interested in joining the TFoE, receiving notifications about future task force 
reports, providing feedback on reported results, or suggestions for future activities are encouraged to contact the 
TFoE chair David Gotz at gotz@unc.edu. 
 

5. Conclusion 

The AMIA VIS WG Task Force on Evaluation (TFoE) was established in early 2016 to investigate the state-of-the-
art in visual analytics evaluation and to provide a report documenting recommendations for visual analytics 
evaluation within the context of the medical informatics domain.  A team of seven experts have volunteered to work 
toward this goal, and this article serves as a progress report to the VIS WG community regarding the TFoE’s 
progress to date.  Progress includes an ongoing literature review and the development of a framework for 
characterizing different approaches to the evaluation process.  The TFoE will continue these areas of work, with the 
goal of developing a final report for the VIS WG community in the coming months.  
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Visualizing	Edit	Distances	Between	Kinase	Inhibitor	Names	and	English	Words	
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Abstract:	 Kinase	 inhibitors	are	promising	chemotherapy	drugs	 that	are	notoriously	difficult	 to	 spell.	Consequently,	
searching	 unstructured	 data	 such	 as	 Electronic	 Health	 Records	 (EHRs)	 for	 kinase	 inhibitor	 names	 is	 difficult	 and	
impedes	 research	 endeavors.	 We	 have	 created	 visual	 networks	 depicting	 the	 similarity	 of	 generic	 kinase	 inhibitor	
names	amongst	each	other	and	across	words	in	the	English	dictionary.	This	is	an	initial	step	towards	a	rational	search	
query	in	EHRs	and	other	unstructured	text	sources	(e.g.,	social	media	platforms)	for	kinase	inhibitor	names.	

Introduction:	Kinase	inhibitors	are	an	important	class	of	chemotherapy	medications	that	are	used	in	many	cancer	
treatment	 settings.	 A	wealth	 of	 kinase	 inhibitor	 research	 data	 could	 be	 derived	 from	Electronic	Health	 Records	
(EHRs);	 however,	 searching	 for	 the	 names	 of	 kinase	 inhibitors	within	 unstructured	 EHR	 data	 is	 difficult	 due	 to	
their	problematic	spellings.	Kinase	inhibitors’	names	are	similar	to	one	another,	similar	to	various	English	words,	
and	notoriously	difficult	to	spell	by	clinicians	as	well	as	patients	(e.g.,	erlotinib	is	misspelled	elrontinib,	etc.).	These	
are	all	important	considerations	to	keep	in	mind	while	searching	for	kinase	inhibitor	names	in	EHRs.	To	better	and	
more	 intuitively	 understand	 the	 similarities	 between	 kinase	 inhibitor	 names	 to	 one	 another	 and	 to	 common	
English	words,	we	have	constructed	a	variety	of	network	graphs	to	visualize	word-to-word	relationships.	Complex	
multi-dimensional	relationships	such	as	these	are	often	amenable	to	intuitive	understanding	when	represented	as	
graph	 visualizations.	 These	 visualizations	 provide	 an	 intuitive	 understanding	 of	which	 kinase	 inhibitors	will	 be	
most	difficult	to	accurately	capture	from	the	patient	EHRs	due	to	similarities	with	other	kinase	inhibitors	and/or	
with	English	words.	

Methods:	The	generic	names	of	27	FDA	approved	small-molecule	kinase	inhibitors	were	used	in	this	analysis.	We	
used	an	electronically	searchable	version	of	the	2015	Merriam-Webster	Dictionary	as	our	source	of	English	words	
for	comparison.	The	computational	linguistic	concept	of	edit	distances	was	used	to	measure	the	spelling	similarities	
between	words.	Edit	distance	is	the	minimum	number	of	operations	required	to	turn	one	word	into	another.	The	
specific	type	of	edit	distance	we	used	is	called	the	Levenshtein	distance,	which	includes	the	removal,	insertion,	or	
substitution	of	a	character	in	the	word	as	viable	operations	[1].	The	analysis	and	graphs	were	generated	using	the	
programming	language	R,	version	3.2.4	(2016-03-10)	[2].	The	packages	stringdist	[3]	and	igraph	[4]	were	used	to	
compute	 edit	 distances	 and	 generate	 network	 visualizations,	 respectively.	 The	 package	wordcloud	 was	 used	 to	
generate	a	novel	hybrid	layout	[5].	Through	igraph	we	were	able	to	portray	each	vertex	of	the	graph	as	a	word,	and	
each	line	(i.e.,	edge),	as	a	representation	of	the	edit	distance.	Two	different	force-directed	network	graph	models	
were	used	 in	 the	 creation	of	 our	 visualizations.	The	models	 treat	 vertices	 on	 the	 graph	as	physical	 objects	with	
attractive	 and/or	 repulsive	 forces	 on	 one	 another.	 The	 Fruchterman-Reingold	 model	 places	 attractive	 forces	
between	 connected	 vertices	 and	 repulsive	 forces	 between	 all	 vertices	 [6].	 The	Kamada	&	Kawai	 model	 creates	
spring	forces	between	all	pairs	of	vertices,	utilizing	Hooke’s	law	[7].	

Results:	We	have	 generated	 several	network	graphs	 showing	 the	 relationship	between	generic	 kinase	 inhibitor	
drug	name	spellings	and	dictionary	word	spellings	(figures).	Separate	Fruchterman-Reingold	and	Kamada-Kawai	
layouts	were	 created	 using	 identical	 word	 length	 and	 edit	 distance	 parameters	 (upper	 left	 and	 upper	 right).	 A	
novel	“word	cloud”	hybrid	layout	was	also	created	to	uniquely	visualize	which	generic	drug	names	had	the	most	
dictionary	words	associated	with	them	(lower	left).		

Discussion:	 The	 network	 graph	 visualizations	 created	 in	 this	 study	 show	 the	 large	 number	 of	 words	 that	 are	
similar	to	the	generic	drug	names.	Cognizant	of	these	novel	observations,	we	will	better	be	able	to	modify	EHR	and	
free	 text	 searches	 of	 kinase	 inihibitor	 names.	 This	will	 allow	us	 to	maximize	 the	 possibility	 of	 discovering	 drug	
exposures	while	avoiding	false	positives	when	using	fuzzy	search	strategies.	It	is	also	possible	that	such	word-to-
word	spelling	analyses	as	demonstrated	here	could	better	guide	ideal	naming	of	drugs	in	the	future.	
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Figures:	Upper	Left:	This	network	graph	utilizes	the	
Kamada-Kawai	 force	 model.	 Dictionary	 words	 6-8	

characters	 long	 with	 an	 edit	 distance	 of	 3	 or	 less	

with	generic	drug	names	were	the	parameters.	Blue	

vertices	 represent	 drug	 names.	Upper	 Right:	 This	
network	 graph	 implements	 the	 Fruchterman-

Reingold	 model	 with	 the	 same	 parameters.	 	 Red	

vertices	represent	drug	names.	Lower	Left:	Generic	
drug	 names	 are	 displayed	 in	 a	 circular	 layout.	

Within	 the	 circle	 are	 dictionary	 words	 4-10	

characters	 long	 with	 an	 edit	 distance	 of	 4	 or	 less	

with	multiple	generic	drug	names.	On	the	perimeter	

are	word	clouds	showing	dictionary	words	with	the	

same	parameters	 that	 are	only	uniquely	associated	

with	 the	 same	 colored	 generic	 drug	 name.	 Cloud	

words	that	are	closer	to	the	generic	drug	names	are	

more	 similar	 in	 spelling.	 The	 font	 size	 of	 words	

increases	with	 the	number	 of	 connections	 it	has	 to	

surrounding	words.	
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CHAI: A Visual Interface for Examining Subject Matter Similarities across 
Intervention Chat Message Histories 
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1University of Washington School of Medicine; 2Seattle Children’s Research Institute 

Abstract 

Chat messages can involve a wide variety of topics, and the added dimension of time makes the problem of 
identifying similarities in chat message histories particularly complex.  In this paper, we present Communication 
History Analysis Interface (CHAI), a visual interface to facilitate the identification of commonalities in chat 
message histories and the investigation of how these might be related to intervention outcomes. 

Introduction 

The analysis of time-oriented data has been identified as a particular challenge in visual analytics in health care, due 
to difficulties such as addressing the scale and complexity of data and intertwining patient conditions with treatment 
processes1. We are increasingly seeing examples of visual approaches to support analysis of high-dimensional 
temporal event data, including interactive multi-view visualizations and ad hoc statistical analytics2, interactive 
visual cluster analysis3, and ontology-based event sequence representation to support interactive exploration4. 

Intervention chat messages histories are one example of time-oriented data.  They can be challenging to work with 
due to the complexity arising from high-dimensionality incurred through analyzing a variety of topics in sequence.  
As patients go through interventions, they may discuss many aspects of their experience that have bearing on their 
condition and/or the efficacy of the intervention.  The dimension of time adds a layer of complexity to the problem 
of identifying similarities in these histories.  Lastly, the narrative form of chat messages does not lend itself to the 
identification of topics in any given history, let alone the comparison of histories.   

However, there are ways in which text mining, clustering, and visualization techniques may be combined to 
facilitate this process.  In this paper, we present Communication History Analysis Interface (CHAI), a visual 
interface that is currently under development, which facilitates the identification of similar chat message histories, 
the discovery of common motifs, and the investigation of how these might relate to patient health outcomes. 

Approach 

We employed a three-fold approach: topic modeling, hierarchical clustering, and visual analysis. 

1. Topic modeling

To determine whether there are similarities in the topics discussed, it was first necessary to identify the topics.  To 
perform this task, we used a generative probabilistic modeling algorithm, Latent Dirichlet Allocation (LDA), which 
models documents as random mixtures over topics, where a topic is defined as a distribution of words5.  Using the 
LDA implementation available within the MALLET toolkit6, we identified the most common topic within each 
message.  Then, we generated a sequence of topics by temporally aligning all messages for a given study ID.   

2. Hierarchical clustering

We used the Smith-Waterman algorithm to determine the optimal alignment of the chat message topic sequences 
across study participants, and employed it as a similarity measure to assign the sequences to clusters using group-
average agglomerative hierarchical clustering.  The Smith-Waterman algorithm, often used to align and identify 
similarities between two biological sequences7, is also employed here to facilitate the discovery of common motifs. 

3. Visual Analysis

The interface offers multiple interactive views: Overview, Cluster Overview, and Cluster Detail.  The Overview 
provides a high-level view of the data and a set of filters to explore subsets of interest.  The other two views enable 
users to employ cluster analysis to identify study participants who may be similar to one another based on their 
message histories, in increasingly greater levels of detail.  The Cluster Overview level displays the chat message 
histories and cluster summary statistics (e.g. cluster means on outcome variables) separated by cluster (Fig. 1).  
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Figure 1. CHAI: Cluster Overview level. 

In the Cluster Detail view, hovering over any given message reveals the corresponding message.  The Cluster Detail 
view also features a legend that shows the high frequency keywords for each topic.  A sample set of topics and 
keywords is depicted in Figure 2. 

Figure 2. Sample topic keywords. 

Case Study of an Analysis of Chat Message Histories for an Online Chronic Pain Intervention 

We illustrate the potential use of CHAI to analyze chat message data from an Internet-delivered cognitive-
behavioral therapy (CBT) intervention (Web-based Management of Adolescent Pain; Web-MAP) for youth with 
chronic pain and their parents8.  We recently demonstrated the benefits of Web-MAP compared to an online 
education control condition in reducing activity limitations, improving sleep quality, improving parenting behaviors 
and parent-perceived impact.  The dataset is comprised of chat message histories of participants randomized to the 
Web-MAP arm of the trial and includes messages between two types of dyads: online coach-youth, and online 
coach-parent.  Online coaches initiated asynchronous email messages to participants in response to completed 
homework assignments through a secure message center.  Online coach messages were guided by a structured online 
coaching manual, and focused on praising homework completion and problem solving barriers to skills practice. 
Participants had the option to respond to these messages or initiate new messages through the message center.  

In order to identify similarities in chat message histories, we might access the Cluster Overview and Cluster Detail 
views.  If we examine Cluster 4 in the Cluster Overview (Fig. 1), we see that, at the beginnings of the message 
histories, the blue topic is extremely common.  Examining these messages reveals that they are the coaches talking 
with parents about noticing clues that indicate that their children’s stress levels are increasing.  Towards the end the 
message histories, we see discussions concerning lifestyle changes (dark green) and coaches reinforcing parents’ 
work with their children (light green).  Examining the common motifs of each cluster, along with the summary 
statistics of treatment outcomes of the cluster, can lead to insights concerning how aspects of the treatment 
experience are associated with treatment outcomes for the corresponding participants. 

Conclusion 

This paper described CHAI, an interface that is being developed to support exploration of similarities in chat 
message histories.  The interface facilitates visual identification of similarities using an approach that combines text 
mining, cluster analysis, and multiple interactive views.  A particular strength of this application is that it leverages 
text mining and cluster analysis techniques to identify automatically identify thematic similarities in narrative data 
that would otherwise be difficult to detect through manual examination, but leaves the difficult work of 
interpretation of patterns of significance in the hands of domain experts through interactive visual analytics features. 
Current development efforts include the implementation of additional clustering methods and on-demand statistical 
analysis to extend the analytic support provided by the application. 

 clues stress learning things move strategies working note pain drop find rest spend coach end people read beginning kinds 

 great sleep lifestyle work goal water habits making sounds move good set goals make day specific activity change working 

 skills pain learned ability great job looked anytime move made efforts proud improved encourage improve activity good check work 
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Abstract - In the era of value based healthcare, cardiologists rely on clinical data mining or visualization tools to perform data-

driven studies such as effectiveness or efficiency measurements and cohort analysis
 [1]

. Challenges for providing such tools 

include making available of necessary data for analytics, complexity and lengthiness of cohort selection, visualization of data and 

results, etc..  In this paper, we present an interactive tool that integrates multiple data sources (ECG, ECHO and MRI) to assist 

clinical researchers with data mining and visualization. One key component is to provide an interactive cohort selection 

dashboard to assist cohort selection. It provides a graphical way to present the distribution of cohorts and also provides real-time 

feedback when user changes cohort definitions. Tested with two use cases, it has been demonstrated that our tool can expedite the 

process of data mining. Using Tableau
 [2]

, visualization of data and analysis results is enabled in a manner that is meaningful to 

clinical researchers. On-demand analysis, in ad hoc fashion is also supported.  

I. INTRODUCTION
1

 

   In the era of value based healthcare, there is a need to 

provide clinical researchers with data mining or 

visualization tools to perform data-driven studies for a 

variety of topics, including cohort analysis, effectiveness or 

performance measurements, across multiple clinical 

databases
 [1]

. Challenges for providing such tools include 

making available of necessary data for analytics, cohort 

selection, visualization of data and results, etc..  Clinical 

researchers are oftentimes practicing physicians who did not 

receive education in relevant technical areas, such tooling 

also needs to be comprehensible to the lay user.  

While huge volume of clinical data is routinely collected 

as part of the care process, mining thereof remains 

challenging especially if the data is stored in disparate 

databases. Since the necessary data for analytics is stored in 

disparate databases, integration across multiple databases is 

therefore required. Also, clinical databases are transactional 

databases, which were never designed for data querying. 

Thus research queries on such databases are very complex, 

which creates a barrier to data access. This also raises a 

need to set up a data warehouse infrastructure that natively 

encompasses analytics data model to support efficient and 

transparent data querying and interactions.  Furthermore, 

inconsistency of the same data fields across multiple data 

sources or a variety of data formats requires pre-processing 

of data. 

Cohort selection is another important yet difficult step to 

support data analytics. Cohort selection is typically a 

complex and laborious process, because cohort definition in 

a formal query language is complicated, especially if the 

definitions evolve in the course of the analysis after 

inspection of cohort distribution. Without a clear 

understanding of data distribution in the cohort, it is typical 

that clinical researchers will go through a few iterations of 

cohort definition revising process before identifying a 

cohort to support further analysis.  

Providing visualization tools also plays an important role 

in facilitating data mining. Although tools, such as Tableau 

[2]
, or D3.js exist, data mining will not be enabled if we fail 

to pre-process the data and set up a suitable data warehouse 

infrastructure for reasons discussed above.  

In this paper, we present an interactive tool allowing 

clinical researchers to perform data mining across multiple 

cardiology databases (ECG, ECHO and MRI). An 

interactive visualized dashboard has been incorporated to 

assist cohort selection. Assisted by Tableau, it allows 

visualization of any data or analysis result. The dashboard 

has been tested with two use cases and the results 

demonstrate that it is scalable to support a wider range of 

clinical analytics topics and it helps to expedite the process 

of data mining.  

II. METHODS

The system consists of five integrated components, see in 

Figure 1.  

Data Pre-processing Engine: This engine extracts and 

transforms data from multiple data sources and loads the 

data into a data warehouse. 

Data Warehouse: The infrastructure that stores data using  

a comprehensive analytic data model to support efficient 

and transparent querying of data for analysis. With each 

added data source, a flat table is created to store the pre-

processed data. 

Cohort Selection Engine: This engine prepares the initial 

cohort selection table by including all the population. Then, 

by applying filters and temporal restriction, clinical 

researchers can select the cohort of interest.  

Cohort Distribution Dashboard: This dashboard helps 

clinical researchers to interactively investigate the data 

distribution of cohorts.  

Interactive Result/Data Visualization: clinical researchers 

can visualize the result or data, using Tableau. 

III. RESULTS

We have integrated multiple cardiology databases from a 

US-based academic hospital, containing ECG, ECHO and 

MRI interpretation data. 

The system supported a wide range of analytics topics, 

including quality measurement, effectiveness evaluation of 

An Interactive Tool for Clinical Data Mining and Visualization 
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procedure or test, cohort analysis and performance 

measurement. We use one of the use cases to demonstrate 

our result. In this particular case, the clinical researcher 

wants to test the hypothesis that the same measurement 

collected from MRI scan and ECHO test for the same 

patient could be different, especially in the abnormal cohort.  

Data extracted and transformed from source MRI and 

ECHO databases will be stored in the data warehouse 

(DW). A cohort table in DW is generated by applying 

filters, in Tableau or DW, according to a definition for 

abnormal versus normal patients, see Table 1.  

  Fig 1. System Architect 

We have designed an interactive cohort selection 

dashboard, see Figure 3 that facilitates clinical researchers 

to understand the distribution of data within each cohort. 

Graph ‘MRI’ indicates that in the database, we have 

identified 82 abnormal MRI studies and 519 normal MRI 

studies. Within 3 months before MRI studies, 297 (56 + 

241) cross referenced ECHO studies are identified, among 

which 241 cases are normal.  The vertical axis of the three 

graphs in the upper area indicates the number of records 

found. The horizontal axis corresponds to the timeline. The 

MRI study sits at position 0 because we are measuring the 

time difference of ECHO studies compared to MRI studies, 

using MRI studies to cross reference studies in ECHO 

database. Studies in the class ‘3 months before MRI’ 

indicates that the time difference between the MRI and 

cross-referenced ECHO studies is less than 3 month and the 

ECHO test is performed before the MRI scan. The temporal 

filter allows physicians to alter the timeline. For example, if 

only ‘-1, -2, -3’ are selected, in the graph ‘ECHO – Before 

MRI’, only one column, ‘3 months before MRI’ will be 

displayed. Other related fields will also be updated 

accordingly. The statistical summary table indicates total 

number of samples identified. By applying the filter 

‘ECHO_Cohort’ or ‘MRI_ABNORMAL’, physicians can 

select to see the cohort of interest. The pie charts indicate 

the number of records identified in each cohort using 

specific criteria. For instance, in ‘Details of Distribution - 

MRI’, out of total of 82 abnormal MRI, 50 are identified 

using criteria ‘Diagnostic statement indicates aortic valve 

insufficiency’. Enabling interactive investigation of cohort 

distribution provides a clearer view of the cohort, assisting 

clinical researchers in revising or finalizing cohort 

definition.  

In the case when clinical researchers want to revise the 

definition of cohort, the definition could be updated using 

SQL like language or by applying filters in Tableau. For 

example, by unchecking ‘MV regurgitant abnormal’ in filter 

‘MRI Abnormal Definition’ in Figure 3, definition for MRI 

abnormal cohort will be updated to exclude this particular 

criteria. Upon updating, the dashboard will automatically 

reflect the changes to provide real-time feedback.  

Fig 3. Cohort Distribution Dashboard

Ad hoc analysis is also enabled, since the necessary data 

for analytics has been made available and Tableau offers 

self-service environment for clinical researches to access 

and visualize data, see Figure 4.  

Fig 4. Ad hoc Analysis to Display Age and Gender Distribution within Cohort

    It is displayed in Figure 5 that the system enables 

visualization of results, in various ways and in an interactive 

fashion. 

Fig 5. Visualization of analytics results 

IV. CONCLUSION

The system has been successfully used at a US-based 

academic medical center for testing clinically impactful 

hypothesis, which results in clinical research abstracts. 

Results shows that the tool has enabled data mining across 

multiple cardiology data sources (ECG, ECHO, MRI). It 

facilitates cohort selection.  It allows visualization of results 

in an interactive way. And it has greatly expedite the 

process of data mining.   
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MRI: Diagnostic statement indicates aortic 

valve insufficiency or aortic valve regurgitant 

> 20% or mitral valve regurgitant > 20% 

ECHO: Diagnosed with arotic valve 

insufficienty or mitrial valve insufficiency 

Find the study pairs in which MRI and 

ECHO tests are peformed within 6 months  
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MRI: Diagnosed with LV size normal and 

LV EVDI Zscore within (-2,2) 

ECHO: Diagnosed with LV size normal 

Find the study pairs in which MRI and 

ECHO tests are peformed within 6 months 

Table 1 Cohort Definition 
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ABSTRACT 
The human genome is a complex mix of approximately 10 million 
SNPs (single nucleotide polymorphisms). Each SNP represents a 
difference in a single DNA building block and may be correlated 
with traits and health conditions. The translation of complex 
multidimensional genetic data into actionable health behavior 
information to prevent disease is a difficult task. Our team 
developed the Genetics-based Motivation Viz (“GMV”) in order to 
help individuals and health practitioners identify, motivate and 
prioritize genetics-based health behavior change opportunities. 
GMV incorporates an abstraction of a validated health behavior 
change framework, in combination with an individual’s direct-to-
consumer genetic testing (DTC-GT) results (including their health 
condition risk, moderating risk factors, strength of evidence 
supporting claim), juxtaposed with their self-reported ease of doing 
certain health behaviors (such as eating a low fat diet). GMV was 
deployed in a web browser and evaluated via a survey with 16 
respondents. The majority of respondents indicated GMV was at 
least somewhat useful and understandable, but also identified areas 
for future work. With further development, GMV may be effective 
in translating genomic data into meaningful health behavior change 
information useful for individuals and health practitioners. 

INTRODUCTION 
The use of genetic information by consumers and health 
practitioners is growing rapidly and is expected to take on added 
significance in the diagnosis, prevention and treatment of disease in 
coming years.1 Direct-to-consumer genetic testing (DTC-GT) refers 
to testing sold directly to consumers via the Internet, television, or 
other marketing venues without involving health care professionals. 
In general, DTC-GT utilizes mitochondrial DNA (maternal 
contribution), Y-chromosome (paternal contribution), and markers 
on autosomes (ancestral information) to provide data and 
interpretation about one’s genetic makeup and potential 
consequences of this makeup (Ibid). Consumers’ motivations for 
genetic testing typically include: general curiosity; improving their 
general health; ascertaining the risk of a particular condition; or, 
planning for future children.2,3 Disease risk is a complex web of 
genetic, behavioral and environmental factors. Individual   
differences, including sociodemographic a n d  psychological 
attributes as well as one’s personal experiences (e.g. family history 
and first-hand experience with a disease) may influence one’s 
genetic risk perceptions, and the use of genetic information.4

DTC-GT supporters believe that the information these tests provide 
may lead to better understanding of one’s health, more empowered 
decision-making, and motivate adoption of beneficial health 
behaviors. 2,3 DTC-GT skeptics cite issues with the validity of 
testing, interpretability of results and potential unwarranted health 
services use from under-informed consumers.1,5 When individuals 
are told they do not carry genetic-risk variants, the possibility they 
will interpret results to mean that they do not need to reduce 
behavioral risk factors is also a concern.6 The United States Food & 
Drug Administration has barred certain DTC-GT service providers 

from providing health results, citing insufficient evidence to support 
genetic test report health claims.7 

The current evidence is mixed regarding a consumer’s health 
behavior change following a genetic screening.8 McGuire finds that a 
sizable percentage (78%) of patients need help interpreting personal 
genomic testing results, which the GMV aims to do.9 The primary 
aim of the GMV is to support the following users/needs: (a) A 
wellness coach or healthcare provider (“practitioners”) seeking to 
understand a client’s genetic disease predispositions and advise 
his/her client on behaviors to take to reduce the risk of genetic-based 
disease; and (b) An individual seeking to make decisions about 
behaviors to potentially reduce their risk of disease. 

RELATED WORK 
Our research is informed by the literature regarding: health 
behavior change; genetic information use by consumers, especially 
direct-to-consumer use; and, visualizing genomic data. 

Chronic diseases including heart disease, cancer, lung diseases and 
diabetes are the most frequent causes of death in the United States.10 
Behavioral factors, particularly tobacco use, diet and activity 
patterns, alcohol consumption and avoidable injuries are among the 
most prominent contributors to mortality.11,12 However, with 
changes to certain behaviors, individuals can dramatically reduce 
the severity and likelihood of disease.  However, changing 
behaviors is difficult. Models to foster health behavior change have 
applied numerous techniques with varying success.13 Fogg has a 
highly regarded and validated behavior change model, which finds 
successful behavioral change action is a function of the individual’s 
motivation, their ability to perform a behavior and external 
triggers.14 We tailor this model towards our DTC-GT use case and 
GMV. 

An individual’s perceived seriousness and controllability of the 
genetic test- identified disease is a major health behavior-
moderating factor.15 Other general factors that affect consumer’s 
perceptions of genetic and pharmacogenetic testing include the 
clinical, epidemiological and economic evidence related to the 
information they must process.16 These moderating factors are 
leveraged in GMV. 

Determining how best to integrate and visualize genetics-related 
disparate data types to better understand biological systems is hard. 
Genetic viz tools need to combine diverse data forms, such as clini-
cal information together with genomic data. These tools require 
visual representations that scale efficiently to thousands or millions 
of elements.17 There are many stand-alone and web-based genome 
viz tools, which focus on helping scientists to explore, interpret and 
manipulate their data.17,18,19 However, consumer tools are limited, 
and no genetic viewer for a health coach has been found in our 
literature search. Recent work advocates for more customizable 
interfaces for consumer genetic-data information processing using 
commercially available tools, such as Tableau.20 
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RESULTS 
GMV was created using Tableau v9.1 software. DTC-GT raw data 
obtained via 23andMe was processed through the Promethease 
service (raw DNA data from multiple labs may be used), which 
provides SNP-specific disease risk, magnitude of importance, 
relevant risk-moderating behaviors based on the scientific literature 
in SNPedia. GMV combines this data file with a consumer’s self-
reported ease in performing certain health behaviors (such as eating 
a low fat diet) that may lessen their risk of contracting certain health 
conditions (such as heart disease). Figure 1 shows the GMV as it is 
displayed on Tableau Public at http://go.umd.edu/GMV. 

Our GMV idiom uses color, size, and position to communicate 
genetic information. The GMV Y-axis shows the magnitude of an 
individual's SNPs. Magnitude is a subjective measure of interest 
generated by the SNPedia community, and ranges from 0: common 
genotype for which nothing interesting is known, 3: probably worth 
your time, to 10: really significant information (such as strong 
evidence of SNP’s health impact).  The GMV X-axis shows ease of 
behavior as reported by the individual, ranging from 1:not easy to 5: 
very easy). Node color matches the health condition associated with 
the SNP. Health risk of SNP is represented by node size, with a 
larger node meaning greater risk. Rollover the node and a pop-up 
provides text details about the disease condition, behavior, ease of 
behavior, SNP name, magnitude and risk variables.  Filters are 
provided that can reduce the information density by disease 
condition and behaviors.  

An interpretation example: A BRCA1-associated SNP (e.g. 
rs28897696; BRCA is associated with 80-90% lifetime risk of 
breast cancer) node would be found in upper left of graph as this is 
a validated SNP variation that has severe consequences (high 
subjective magnitude), it would be large as cancer risk prevalent in 
carriers is high, and located to left on X-axis because the behavior 
for reducing risk, a mastectomy, is hard to perform.  A condition 
with low magnitude that is not easy to do (lower left) are least 
likely to have successful behavior actions. The action likelihood 
line, superimposed above, is an approximate behavior change 

threshold approximated based on Fogg’s findings.14 

The principles of simplicity and clarity was used to limit additional 
imagery, features such as shape were discussed for the health 
behavior, but assessment indicated the design would be too busy and 
confusing. Hue was considered for risk, but judged difficult to 
interpret. 

A small user evaluation was administered using a convenience 
sample of Survey Monkey Audience members (16 respondents: ages 
20-72 yo, mean age 58 yo; 11 female). All respondents were based in 
the United States. Half had received no formal genetics training 
while 31% had at least a semester covering genetics topics in high 
school or college and 18% had greater than a semester of 
training/education in genetics-related topics. Respondents were 
questioned regarding the GMV’s understandability, usefulness in 
selecting health behaviors, features, clarity and future enhancements.  

DISCUSSION 
More than half of respondents found the GMV somewhat 
understandable and usable, but findings indicate further work is 
needed on this alpha release. The ability to filter the GMV viewable 
elements across several data types was the most preferred feature. 
Improvements should include: clarifying axis label meaning; 
providing greater contrast when 2 nodes located in same space; and, 
a need to further simplify. Providing links to external content on 
relevant SNP information and evidence would likely be useful to 
users. Future work may include providing features to track one’s 
progress towards risk reduction over time and additional filters for 
personalization and clarity. DTC-GT offers individuals and health 
practitioners opportunities to engage around genome-related health 
improvement opportunities. With further refinement, GMV may be 
effective in translating multi-dimensional genomic data into 
meaningful information for health behavior change. Additional work, 
including experimentation with additional viz elements and 
modalities, and participatory design with targeted cases, is required 
to improve the overall understandability and utility of the GMV.  
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Abstract 

Healthcare redesign has relied largely on retrospective, ad-hoc, batched analyses to determine whether clinical 
process interventions have positively impacted care. These approaches may be 1) slow; 2) hard to scale; 3) not 
readily reproducible; and 4) may only account for patient-level outcomes and process metrics, not metrics that 
define whether care redesign is happening as intended. To solve this problem and to support a care redesign effort 
aimed at optimizing utilization patterns for medically and psychosocially complex patients, a REal-time Care 
Analysis Platform (reCAP) was rapidly, iteratively designed through multiple design sessions with clinicians and 
stakeholders in the form of a readily-accessible web application. reCAP was created concurrently with the 
implementation of a care pilot using modern, open-source software frameworks. The developed dashboard 
prototype provides user-centered, role-specific visual analyses on filterable, dynamic patient and cohort-level data 
from electronic health records, audit logs, and financial data. Thematic analysis of initial qualitative evaluation 
data identify strengths in usability, data manipulation, and supporting information needs. Identified areas for 
improvement include solidifying clinical relevance and further enabling options for rapid reporting. 

Introduction 

Preventing unnecessary healthcare services and improving access to care for the underserved remain major goals of 
contemporary healthcare redesign. For example, achieving optimal care for psychosocially and medically complex 
patients, thus avoiding preventable readmissions and improving outpatient clinic adherence, has proven to be a 
persistent challenge for the modern healthcare system1. One of the reasons this challenge remains is that 
restructuring clinical workflows can be difficult and costly. But just as importantly, the analysis of care redesign 
efforts may rely on slow, batched, often ad-hoc analyses. Moreover, one analytics solution for one care pilot may 
not scale readily to the next. 

An example of active care redesign, the implementation of individualized, longitudinal care plans for complex 
patients with high utilization of emergency rooms and unplanned inpatient admissions, has successfully reduced 
inpatient admissions and 30-day readmissions2. These interventions are relatively recent and, as such, there is a 
small but increasing amount of data to support their efficacy. Medical centers across the country are beginning to 
adopt similar programs, which pair longitudinal care plans with alerts to dedicated teams of hospitalists and 
extensivists in order to maximize coordination of care each time the most complex patients encounter the healthcare 
system. Vanderbilt University Medical Center (VUMC), a 1000-bed medical and surgical academic medical center 
in the Mid-South, has enacted a customized care delivery pilot program for the purpose of optimizing patient care, 
enhancing continuity, and preventing unnecessary healthcare services. 

Because care redesign is expensive, difficult to initiate, and costly to maintain, workflow interventions are often 
tested via clinical pilots. These pilots may be created and implemented rapidly over weeks to months and, while 
evaluation metrics are identified to measure their success, there are few solutions to support evaluating them in real-
time. One such tool, CoCo, employs a unique blending of visual and statistical analytics for cohort comparisons, but 
is currently not available for use, requires input of tabular datasets, and must be installed on individual computers3. 

Another challenge in the evaluation of care redesign is the fact that program metrics may be unique to particular care 
pilots or they may not be tracked in a way that makes them amenable to analytics without a data science or natural 
language processing. For example, metrics of success may be well-characterized in clinical data, such as process 
metrics like “reduction in length of stay”; but they may also be conceptual or heuristic such as “improved 
communication between providers”. During the implementation phase, stakeholders may not have the right data in 
real-time as to whether or not the program is achieving milestones or even if care delivery is being delivered in 
adherence with components of the interventions themselves. Solving this problem requires the utilization of multiple 
sources of hospital data. EHDViz appears to be a promising, open-source, web-based, visual analytics tool for 
displaying patient data from multiple inputs, but requires significant customization to implement4. 
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Finally, quality and clinical care improvement efforts often focus on particular cohorts or groups of patients with 
common demographics, common diagnoses, or common treatment elements in their care plans. Thus, program 
impact and changes in patients’ care trends must be flexibly aggregatable and filterable by participating stakeholders 
and clinicians themselves. While solutions such as Tableau exist to provide custom dashboards, it does not allow for 
the quick development of a lightweight and open source solution and requires instead trained developers to build 
dashboards in a proprietary format5. 

Visual analytic techniques have the ability to convey the large amounts of data housed within EMRs in an intuitive 
way, providing a solution for information overload6. The deployment of visual analytic tools has been shown to be a 
promising method for analyzing systemic care processes and adherence to care guidelines7,8. Use of color, ability to 
change visual density, and ability to filter are all important techniques for effectively displaying large amounts of 
temporal EMR data9. For example, EventFlow, succeeding LifeLines and LifeLines2, fulfills these requirements, but 
lacks support for pre/post analyses10,11,12. HARVEST provides hospital encounter timelines for individual patients in 
real-time through traditional web browsers, but does not enable cohort views or data aggregation13.  

Our objective was to rapidly design and deploy a secure, flexible, usable online visual analytics platform 
concurrently with a care redesign effort at VUMC. We employed interaction design via multiple design sessions 
with stakeholders and conducted qualitative evaluation via semi-structured interviews and Think Aloud. 
Quantitative evaluation is underway and will be described. Our goal was to support a customized, longitudinal care 
delivery program with a similarly prospective, real-time, readily-accessible visual analytics dashboard that would 
support rapidly evolving program needs. 

Methods 

The first step in the development of reCAP at VUMC was a requirements analysis. Three stakeholders were 
interviewed, representing quality control, pilot leadership, and pilot implementation. A user requirements document 
was created from the gathered etic data. Core requirements for the application were: real-time display of timelines of 
patient encounters for thirty initially enrolled patients; ability to filter by patient diagnostic cohorts of interest; time 
scalability; enabling pre/post intervention comparisons of encounters in aggregate and in subgroups.  

Relevant encounters included emergency room encounters, unplanned 30-day readmissions, and outpatient clinic 
visits. A descriptive workflow model was developed outlining real-world use-cases. The interaction design process 
was followed throughout the creation of user-interface wireframe mockups with emphasis on understandability and 
learnability. For the purpose of iterative design, agile principles were followed during the developmental phase and 
another round of meetings with stakeholders were held after mockup creation. The plan for including audit logs to 
help analyze whether or not the individualized care plans were being followed was added to the user requirements 
document. Research on potential existing software solutions did not provide any suitable choice. Focusing on 
accessibility, the decision was made to develop the application using open-source frameworks. Careful consideration 
was taken when choosing a secure backend. Django was chosen to provide a RESTful API for the provision of EMR 
data to the web-browser user interface14. User authentication and authorization protocols were followed for security. 
AngularJS was chosen to create a lightweight, MVC-based frontend15. For aesthetics and simplicity, Bootstrap was 
chosen to stylize the graphic user interface and D3.js was chosen for full customization of graphics16,17. Relevant 
EMR data was accessed through VUMC’s research database supported through the Vanderbilt Clinical and 
Translational Science Award (UL1 RR024975/RR/NCRR, PI: Gordon Bernard). For the protection of patient 
privacy, Protected Health Information was programmatically de-identified as per HIPAA standards18. A stable 
prototype was developed within one month with the entire developmental timeline spanning three months. A 
schematic of the design of reCAP is shown (Figure 1). 

For the purpose of qualitative evaluation and iterative design, individual, hour-long semi-structured interviews that 
each included the opportunity for “think-aloud” were conducted. The three relevant stakeholders, being familiar 
with the novel use-case and prospective end-user requirements, were uniquely suited to be study participants and 
thus were recruited. During the interview, only audio was recorded, which was then manually transcribed. Two 
evaluators (MR, CW) reviewed the audio, extracted comments, and conducted thematic analysis19. 

Quantitative evaluation is planned in addition to the qualitative evaluation above. The next iteration of the 
application will include user audit logs and a click tracking system. Such a logging system will allow the measuring 
of uptake and usage of specific application features by analyzing user activity trends both collectively and 
individually. 
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Figure 1. Design of the developed prototype application and its integration within existing hospital technology. 
reCAP consists of the ‘AngularJS application’ and ‘Django web server.’ .  

Results 
reCAP was completed in accordance with the developed user requirements document (Figure 2). A full outline of 
the functionality of reCAP is out of scope for this work, but in brief, the core functionality is as follows: timelines of 
patient encounters give users a comprehensive overview of each patient’s clinical trajectory; filtering allows the 
removal of patient timelines not relevant to the user’s purpose or service cohort; aggregating allows the 
consolidation of descriptive statistics within the panel for each cohort, shifting focus from the individual’s trajectory 
to the group’s; and time scaling gives the user the ability to compare encounter histories with the time period of their 
choosing, whether before or after the care plan start dates. 

During the described interviews, study participants interacted with this system using real-world clinical EMR data. 
Their comments were evaluated via thematic analysis (Table 1).  

Figure 2. Screenshot of the main view of reCAP with core user requirements. 
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Table 1. Thematic analysis of think-aloud quotes from two participants, representing program quality and program 
implementation. . 

Theme Participant #1 Participant #2 

Accuracy of Displayed 
Data 

"this dashboard is refreshed as of when?" 

"I wonder to what degree we want to 
correlate to [other information sources]" 

“Ok so I definitely see some of my patients 
in here” 

“this must be the encounters that they've 
had” 

Information Needs "You need to know the numbers behind the 
percentages" 

"For me, numerators and denominators are 
huge" 

“age and payer source would be valuable 
additions … zip code might be something 
else [to add]” 

“so we can see when they come to their 
clinic appointments, that's actually really 
helpful” 

“it would be helpful to capture on here 
whether the plan was actually followed or 
not” 

“[adherence to care plans] would be hard 
to see in real time but that is something I 
want to know” 

Reporting "and I would add… labeling axes, we will 
snag it and we will show it. Label it for 
regular use" 

"As leaders, we don't want to DO it, we 
want to minimize data manipulation 
because we have presentations on a daily 
or weekly basis" 

Comparison to Existing 
Solutions 

"We're used to snapshotting because every 
other major view we use is in Tableau" 

“[Leaders in Quality] are looking at 
HCAHPs and Press-Ganey. Everyone is 
looking at those so maybe [they represent 
visually] a model we can follow” 

Clinical Relevance "just from a user interface, when I see 
terms like True/False… your front line 
doctor would want Yes/No. Even 
Duration/Time, I'd want "days or hours" to 
report out" 

"soften the terminology so it's more 
clinician friendly" 

"you might want to put status on here… 
whether [an encounter] is inpatient or 
[Observation] Status" 

“this is all helpful in terms of data 
tracking… this is not going to affect 
workflow for when they come in” 

“as the inpatient doctor this is not going to 
matter to me” 

Usability “The nice thing about dashboards like this 
are they are easy to use, provide easy 
access and are transparent. Anybody who 
is involved in this on a daily basis can 
know the performance of the program and 
where we might need to continue making 
changes.” 
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Discussion 

Thematic analysis of qualitative feedback from think-alouds and semi-structured interviews indicated that reCAP 
had sufficient usability and accessibility but needed improvement in reporting capabilities and further refinement to 
improve clinical relevance. Subsequent iterative development will further address visual functionality, including 
color options and change-signifying graphics, thereby improving accessibility and digestibility of data. The hosting 
of reCAP on a secure internal VUMC server coupled with Django’s ability to handle multiple users and their 
respective rights will provide ample ease of access for every stakeholder. This real-time access will facilitate on-
demand control over the customized care delivery program while supporting patient privacy rights. Combining 
individual patient encounter history timelines with both individual and cohort aggregated analyses of care patterns 
trends appears to be a powerful tool for allowing insight into program operability and effectiveness. The stark 
contrast between the visual nature of reCAP and the display of large amounts of data within the EMR user interface 
upholds that visual analytics is a mechanism of action for improving data comprehension time and user intuition in 
the healthcare setting. 

Timelines became the main focus of reCAP for their ability to visualize individual patient trajectories. Because the 
care pilot focused specifically on customized care plans at the individual patient-level, its impact was measured at 
that same level of fidelity. Users consistently emphasized a desire to visualize individual trajectories in a compact, 
dashboard form. Moreover, because some patients might respond better to this care delivery evolution than others, 
the potential signal – optimized care patterns for high cost, high need individuals – might have been lost in an 
aggregation of all utilization for this population, typified by outlier patterns in the first place. 

The addition of access timestamps from customized care plan audit logs to the visual timelines, implemented after 
interviews were conducted, should help stakeholders see whether or not the planned interventions are being 
followed. Incorporating these logs marks an important feature of reCAP: the ability to utilize multiple data sources 
not normally available within the EMR user interface. Next, within the developmental pipeline, is the addition of 
medical center cost data, which will give stakeholders the ability to analyze the scalability of the customized care 
delivery program as implemented. Integrating this data along with zip codes that can be matched with census data to 
suggest the socioeconomic backgrounds of enrolled patients will both satisfy user requests and provide a platform 
for optimizing individualized care at all stages of the program. 

Rapid development and the use of modern open-source frameworks has allowed reCAP to be tailored and evaluated 
in conjunction with the customized care delivery pilot itself. We anticipate that the application may provide robust 
pre/post analyses of the program’s effects on both the hospital and the enrolled patients at any given time, thus 
empowering stakeholders to optimize and scale with confidence. Currently, reCAP relies upon internally 
standardized data in order to function. With recent widespread EMR vendor adoptions of SMART-on-FHIR 
standards through the Argonaut Project, key goals for the future are to support HL7 FHIR standards and to modify 
the application so it can integrate directly within extant EMRs20,21. These future enhancements will permit 
widespread availability of reCAP and its ability to present visual analyses of the impact of customized care 
programs prospectively and in real-time. 
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Abstract: The SMART Precision Cancer Medicine application compares patient variants of identified cancer genes to 
frequencies at the population-level. The D3 Javascript library was utilized to encapsulate the results of these comparisons 
along with suggested drug efficacies within powerful visualizations that are both interactive and intuitive. The aim of this 
application is to provide support for more personalized decision making at the point-of-care during cancer treatment. 

Background: Precision cancer medicine, i.e., the selection of targeted treatments based on the anticipated efficacy in the 
context of specific somatic mutations found in a tumor, has proven to be a significant step in the advancement of cancer 
treatment. Targeting patient care on a genomic level requires tools that provide clinicians a speedy route to access both 
analyses of patient gene sequencing reports and suggestions for treatment plans tailored to the findings of these reports. 
Ideally, these functionalities would be consolidated into one application. SMART Precision Cancer Medicine (PCM) is a 
prototype app1 that began to explore context-specific gene mutations and variants, using pie and donut charts as the visual 
vehicles for interaction with PCR-based hotspot mutation tests, which typically detect 0 or 1 mutation in a given tumor 
specimen. The current work expands on the prototype by using advanced visualizations tying tumor specimen gene 
variants detected by next-generation sequencing (NGS) panels to expected drug efficacy. 

Methods: We enhanced PCM so as to capture higher-dimensional genomic data, as well as to explicitly link genomic 
variants to efficacy assertions. We explored three types of visualizations to display genomic data: the color-scaled scatter 
graph, the traditional pie chart, and the dynamic sunburst; the purpose for including all three visualizations within the 
prototype was to determine the one that clinicians would deem most efficient at the point of care. Each of the three apply 
different visualization strategies of a proposed information visualization theory.2 This theory states that initial perception 
and visual cognition along with the color scheme of an object all contribute greatly to a viewer’s interpretation. 
Furthermore, the scatter-graph uses a two-dimensional graph to scale the frequency of a variant and increasing amino acid 
position that ensures data is spatially organized in a manner that prevents clustering. On the other hand, the traditional pie 
chart allows for a clear comparison of frequencies of variants with a single glance. Lastly, the sunburst uses an advanced 
pattern of interactivity that allows the user to unconsciously develop a cognitive hierarchical structure whose parent 
branch starts with a view of all the variants of the gene and ends with a single drug. Colors used in each visualization were 
specifically chosen to decrease the chance of barriers a user could face when interpreting colors, and were derived from 
the colorblind-safe ColorBrewer3 scales, with the exception of patient data always being highlighted in yellow and null 
values being in black. Data from COSMIC4 and the Jackson Laboratory’s Clinical Knowledge Base5 was used to populate 
the app. Dynamic links to the external knowledge bases are embedded. Data Driven Documents (D3), a publicly available 
JavaScript library, was used to implement the visualizations. This library was chosen because it provides an API for 
manipulating data and displaying results through extensive customization of elements like scalable vector graphics (svgs). 
The application was developed in the Ionic framework; thus, it is deployable in both iOS and Android operating systems.  

Results: The enhanced prototype compares patient variants to population-level variants of the same gene, and provides 
information specific to each variant (i.e., position, frequency in the population-level dataset, and drug efficacy), as shown 
in the Figures. A mockup of a lung cancer patient with single point mutations in TP53, KRAS, and EGFR (3 mutations, 
total) was developed for clinical evaluation. The top twenty most frequent mutations found in the COSMIC database for 
each gene are displayed. The development proceeded with several rounds of input from subject matter experts.
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Figures: Screen shots of the app based on a synthetic patient, “Jane Doe.” Upper left: TP53 variants, scatter graph; Upper right: EGFR variants and 
drug sensitivities, sunburst; Lower left: EGFR, sunburst with patient variant highlighted, showing drug sensitivities; Lower right: KRAS, pie chart 
Discussion: With an average of 3 variants detected per tumor specimen6, NGS panels dramatically increase the 
complexity of cancer care. We anticipate an increasing need for passive clinical decision support (CDS) in the form of 
information presentation such as described here, as well as active CDS to support treatment decisions. Oncologists and 
patients are generally not formally trained in data visualization or data science, so it will be important to systematically 
evaluate various data presentation methods both for clinicians and for patients. In order to test the usability and usefulness 
of the three visualizations strategies described, we will be introducing this prototype to clinicians through a structured, 
participant-oriented survey that prompts users to utilize and rate the application’s capabilities and provide open 
feedback.  The survey will include comprehensive questions whose focuses range from accessibility and user interface 
design to how well the visualizations communicate NGS data and drug efficacies.  
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Introduction		
The	impact	of	graphical	representation	of	health	record	data	on	physician	decision-
making	is	important	for	the	design	of	health	information	technology.		

Methods		
Design	of	a	novel	simulation	environment	with	data	visualizations	designed	to	
highlight	important	clinical	trends	or	relationships,	followed	by	assessment	of	the	
impact	on	decision-making	and	user	experience	through	a	small	randomized	
controlled	trial.	Providers	viewed	either	a	visualization	case	or	a	control	case	and	
made	clinical	decisions	for	patients	with	chronic	diseases.		

Results		
Twenty-one	participants	completed	the	study.	The	first	five	results	were	used	to	
refine	the	tool;	the	following	sixteen	included	fifteen	primary	care	physicians	and	
one	nurse	practitioner,	including	nine	men	and	seven	women.	Questions	were	
answered	correctly,	averaged	by	individual,	55%	of	the	time.	When	asked	if	they	
noticed	objective	trends	in	the	data,	85%	of	the	time	they	said	yes.	Participants	
noticed	trends	more	when	the	visualization	was	present	and	found	questions	more	
difficult	when	there	was	no	visualization,	but	not	to	statistical	significance.	No	
significant	variation	was	found	in	response	correctness	by	sex,	years	of	experience,	
or	visualization	status.	Satisfaction	with	the	tool	was	very	high	and	participants	
agreed	strongly	that	the	tool	helped	them	make	better	decisions	and	did	so	without	
adding	to	the	time	it	took	them	to	make	these	decisions.		

Conclusions		
The	simulation	tool	allowed	us	for	the	first	time	to	test	the	impact	of	a	visualization	
on	clinician	practice	in	a	realistic	setting.	Designers	of	electronic	health	records	
should	consider	the	ways	information	presentation	can	affect	decision-making.	As	
trends	and	relationships	can	be	perceived	more	easily	in	graphical	format,	some	lab	
values	and	related	data	may	benefit	from	visual	representation.	Testing	such	tools	
can	be	done	in	a	clinically	realistic	context	with	the	right	study	design.	The	results	of	
this	small	study	indicate	that	providers	want	visualizations	and	believe	that	they	
help	them	make	better	and	faster	decisions.	
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Visualizing State-Level Chronic Disease Indicators as a Prelude to Insight on 
Meeting Healthy People 2020 Objectives 

Umesh Singh, Ph.D.1, Victoria Wangia-Anderson, Ph.D.2,  
University of Cincinnati College of Medicine, Cincinnati, OH 1, University of Cincinnati 

College of Allied Health Sciences, Cincinnati, OH2;  

Abstract 

Visualization of the community health status and chronic disease indicators within the most comprehensive and 
reliable datasets provided by CDC's Division of Population Health provides strategic decision making on future action 
plans for appropriate healthcare resource allocation, in order to lower disease burden and meet the Healthy People 
2020 objectives, an initiative taken by DHHS to identify nationwide health improvement priorities and understand the 
determinants of health, disease and disability. A user-friendly visualization tool is applied to the community health 
Status Indicators (CDC) data to generate meaningful insight and development of action plans by concerned officials. 

Introduction 

Healthy People is an initiative to improve the health of all Americans. Its missions are to identify national health 
improvement priorities, promote public awareness and understanding of the determinants of health, disease, and 
disability and the opportunities for progress, to provide measurable objectives and goals that are applicable at the all 
geographic levels and to involve different sectors to take knowledge and evidence-based steps to improve health 
policies and care practices. 

Chronic diseases account for major causes of death in the United States (1). These include heart disease, 
cancers, chronic respiratory disease, strokes, diabetes mellitus, chronic kidney disease (2). Smoking, nutritional 
deficiency or excess, physical inactivity, alcoholism are major risk factors for such diseases (3). Clinical health 
depends on personal factors such as age, race, gender, dietary/recreational habits. Health of the community, 
however, is influenced by the prevalence of disease indicators within the community that significantly influence the 
healthcare burden resulting in high healthcare expenditure for secondary and tertiary care rather than preventive 
care. Visualization of community health status using relevant indicator helps in prioritizing action plans for 
improvement in prevalence or incidence rates for diseases that have high healthcare burden. This study was designed 
to visualize the prevalence of community disease indicators using public datasets Th CHSI dataset retrieved from 
CDC.gov has key health indicators for local communities and promotes decisive argument about actions plans for 
improving community health (e.g., obesity, heart disease, cancer). These data are not only useful for public health 
professionals but also for community members. It has more than 200 measures for the 3,141 US counties. 
Visualization of the basic epidemiological parameters of these measures can be the primary steps before drilling into 
the detailed association of relevant indicators Availability of such longitudinal surveillance data on such diseases 
and risk factors and their appropriate visualization at the different demographic levels (e.g., racial, gender, state, 
country) helps identify the most vulnerable population groups. Therefore, such visualizations help in planning and 
implementation of the most effective policies and interventions to resolve public health issues. 

Datasets available from Centers for Disease Control and Prevention (CDC) on the chronic disease 
indicators (CDIs) include a comprehensive set of surveillance indicators that are developed by consensus by the 
CDC, Council of State and Territorial Epidemiologist (CSTE), and the National Association of Chronic Disease 
Directors (NACDD). Such datasets enable public health professionals and policymakers to visualize and analyze the 
well-defined state-level information on chronic diseases and risk factors. These indicators are essential for 
surveillance, priority listing, and evaluation of public health interventions for chronic disease (4). Sources of CDI 
data include disease registries, national health surveys, inpatient and emergency department databases, Medicare 
claims data, policy tracking systems, and the U.S. Census.  

Methods 
The CDI data file published by CDC in csv format (updated August 23, 2016) was downloaded from the 
https://chronicdata.cdc.gov/api/views/g4ie-h725/rows.csv?accessType=DOWNLOAD&bom=true. All the 
variables (e.g., prevalence rates, mortality rate) are adjusted for age (2000 U.S. standard population). After 
preliminary data cleaning to format length of variable names, the dataset was imported into Tableau v10. A 
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dashboard is created to effectively demonstrate and compare a specific CDI stratified by gender or race at the state 
level. The dependent variable named as ‘Question’ includes the chronic disease indicator of interest, such as 
‘Asthma prevalence in population aged 18 or above’, or ‘Hospitalization for asthma’ etc. The other variables in the 
data set named as ‘Stratification1’ (appearing on the right side of the dashboard) are used for stratification for 
gender or race. As seen in figure 1A, the ‘asthma prevalence above 18 years’ as a CDI has been selected from the 
left panel of the dashboard and compared between whites and African-American population for each state in the two 
maps at the center of the dashboard. Additional bar-diagram inset within each map lists the top ranking states for 
each CDI stratified for gender or race. Similarly, asthma prevalence in each state can be compared between male 
and female populations of the respective states. Using additional dashboards and manipulating the filters two 
different but related CDIs such as asthma prevalence vs. asthma mortality, or asthma mortality vs. influenza 
vaccination (%age of population vaccinated) can be compared between states.  

Additional dataset, i.e., ‘Community Health Status Indicators (CHSI) to Combat Obesity, Heart Disease 
and Cancer’ was retrieved from ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/CHDI/chsi_dataset.zip and 
the ‘DEMOGRAPHICS’ file within the zipped file was further visualized in Tableau v10. A disaggregated 
scatterplot of the ‘poverty’ data column vs. ‘white’ column and similar plot between ‘poverty’ vs. ‘black’ was 
visualized. Hovering over the trend line shows statistically significant relationship between these variable. A cluster 
analysis (new feature in Tableau v10) was then performed for clustering the different States based on these variables 
as shown in Figure 2, using the k-means clustering algorithm with a variance-based partitioning method that ensures 
consistency between runs. These clusters can be further drilled down to determine population characteristics within 
such clusters (Figure 3) and using additional datasets to determine the resource allocation on healthcare, the 
prevalence of chronic diseases and the associated mortality or modifiable risk factors of specific population groups 
(e.g., stratified by race) within these states. 

Figure 1. Dashboard to demonstrate chronic disease indicators, 
stratified by race or gender, at the state level

Figure 2. Visualization of State clusters arranged by 
poverty levels (% population below poverty level, x-
axis) and % of population by race on y-axis. States with 
higher percentage of white population is demonstrated to 
have lower poverty levels. States within each of the 
clusters 1 and 2 can be further drilled down to compare 
healthcare resource allocation, the prevalence of chronic 
diseases and associated risk factors. 
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Conclusion 

CDI data is the most appropriate and contemporary collection of chronic disease surveillance data for 
epidemiologists and other public health officials. Easy and meaningful visualization on such data are possible in 
Tableau and similar data visualization softwares for comparing the predominant chronic disease prevalence and 
mortality rates at the state-level stratified by gender and race. These visualizations offer epidemiological intelligence 
for strategic planning and development of action plans for appropriate allocation of financial and other resources in 
order to maintain parity on access to health systems and meet the Healthy People 2020 objectives (5). 
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Figure 3. Population age structure in clusters 1 and 2. 
States with high poverty levels and higher percentage 
of AA population have distinct population age 
structures (higher %age of younger dependent 
population and lower %age of aged) compared to 
other states. 
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Demo	#1:	

Evolving	Visual	Analytics	for	Better	Clinical	Decisions	

Dave	Anderson	

Syte	Logix,	Inc	

The	exponential	growth	in	digital	data	to	support	compound	research,	new	drug	

development	and	clinical	trials	in	advancing	patient	care	provides	distinct	

challenges	to	a	clinical	researcher.	However,	this	also	presents	tremendous	

opportunities	for	new	areas	of	exploration,	cost	savings	and	revenue	growth	to	

organizations	that	are	willing	to	visualize	their	data	in	new	ways.		

Size	and	complexity	of	clinical	data	matters,	and	unfortunately	today’s	visualization	

technology	does	not	deliver	the	critical	functionality	for	the	researcher	to	quickly	

understand	how	data	is	connected	and	the	dependencies	between	seemingly	

disparate	data	sets.	Common	dashboard	visualizations	do	not	provide	the	necessary	

context	into	how	data	is	connected	and	what	insights	can	be	drawn	based	on	these	

connections.		

In	order	to	meet	the	increasing	board	pressures	to	reduce	cost	and	increase	ROI,	

visual	analytic	tools	must	evolve	to	easily	support	all	of	the	possible	data	available	

to	researchers,	including	complex	semi-structured,	unstructured,	and	3rd	party	

data,	and	enable	them	to	better	understand	which	data	is	connected	and	how	those	

data	sets	are	related.	This	evolution	provides	the	greatest	opportunity	for	

companies	to	use	data	in	a	more	strategic	way	to	improve	value	delivered	to	

patients	and	shareholders.		

In	this	session,	we	will	introduce	and	provide	a	software	demonstration	to	show:	

• How	very	large,	dense,	complex	data	sets	can	be	quickly	and	efficiently

integrated	into	a	visual	analysis	program	

• A	set	of	visualizations	that	explore	the	connections	and	dependencies	across

data	sets	

• A	new	method	to	visually	analyze	data,	enabling	a	deeper,	contextual

exploration	of	data	

• How	customers	adopting	this	new	method	are	realizing	tremendous	cost

savings	and	improving	their	competitive	position	
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Demo	#2:	

A	semantic	search	engine	for	integration	and	visualization	of	
Electronic	Health	Record	data	and	enrichment	with	open	access	

and	public	life	sciences	data	sources	

Filip	Pattyn1,	Bhanu	Bah2	and	Hans	Constandt1	
1Ontoforce	

2Harvard	Medical	School	

ONTOFORCE	(http://www.ontoforce.com)	has	developed	DISQOVER	
(http://www.disqover.com),	a	semantic	search	engine	with	faceted	search	
capabilities	for	life	sciences.	It	currently	allows	to	search	automatically	across	more	
than	110+	different	public	data	sources	that	are	aggregated,	interlinked	and	contain	
information	about	21	different	data	types.	This	system	uses	semantic	web	
technologies	to	embrace	the	mapping	efforts	from	different	projects	like	Unified	
Medical	Language	System	(UMLS),	SNOMED	CT,	ICD10,	ICD9,	MedDRA,	Human	
Disease	Ontology	(DO),	Medical	Subject	Headings	(MeSH)	and	Human	Phenotype	
Ontology	(HPO)	amongst	others.	These	projects	structure	and	encode	information	
related	to	diseases,	phenotypes,	and	clinical	signs.		

Other	covered	data	types	are	genes,	proteins,	pathways,	drugs,	medicines,	
publications,	patents,	clinical	studies	and	data	types	in	translational	research	that	
are	mainly	provided	via	the	eagle-i	network	(http://www.eagle-i.net),	such	as	
antibodies,	plasmids,	biospecimen,	cell	lines	etc.	

Eagle-I	network	at	Harvard	Catalyst	is	a	linked	data	open	source	framework	where	
information	about	research	resources	from	multiple	institutions	is	collected	
organized	semantically,	and	shared.	It	gives	any	scientist	access	to	one	of	the	largest	
collections	of	information	about	core	facilities,	stem	cells,	diagnostic	Laboratories,	
instruments	and	other	valuable,	biomedical	resources.	Institutions	collect	and	share	
information	about	research	resources	in	a	highly	organized	and	accessible	way	
owing	to	the	Eagle-I	Resource	Ontology	(ERO).	Today,	over	40	academic	and	not-
for-profit	research	institutions	are	represented	in	the	eagle-i	open	source	software	
community.	Continued	technical	and	infrastructure	support	is	funded	by	Harvard	
Catalyst	at	Harvard	Medical	School	(grant	number	1UL1	TR001102-01).		

Eagle-I	project	has	partnered	with	Ontoforce	to	bring	internal	and	public	data	closer	
to	the	researcher,	greatly	reducing	the	workload	of	laborious	searching	and	manual	
data	aggregation	from	many	different	sources.	Through	a	semantic	data	curation	
platform,	such	as	eagle-i,	and	semantic	search	platforms,	such	as	DISQOVER™,	a	
researcher	only	needs	to	access	a	single,	user	friendly	and	consistent	platform.	The	
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navigable	visualization	turns	searching	into	an	intuitive	experience.	The	different	
internal	databases	have	already	been	connected	to	the	semantic	search	platform,	
and	all	data	has	been	categorized	through	ontologies.	With	linked	data	technology,	
logical	but	often	hidden	connections	between	various	data	points	are	brought	to	
light	leading	to	better	insights	on	patient	care.	

Electronic	Health	Record	(EHR)	data	often	lacks	structure	and	encoding	schemes.	
DISQOVER	has	the	capability	to	deal	with	these	less	structured	information	sources	
and	can	apply	the	knowledge	from	public	data	and	generally	accepted	ontologies	or	
classification	schemes	to	bring	more	structure	and	links.	An	example	are	the	
capabilities	to	combine	the	usage	of	different	disease	classifications	with	the	
structuring	of	clinical	signs	via	HPO.	This	means	that	diseases	or	conditions	encoded	
as	SNOMED	CT,	ICD10	or	other	classification	codes	can	be	linked	to	HPO	phenotypes	
and	internally	linked	to	individuals	behind	the	organization’s	firewall	but	also	
enriched	with	links	to	literature,	pathways	and	other	data	sources.	A	medical	
practitioner	can	be	enabled	to	access	the	patient	specific	data,	summarize	and	
visualize	this	data	by	disease,	disease	group,	phenotype	or	other	parameters	and	
can	compare	this	with	information	from	other	patients.	During	the	demo	we	will	
showcase	some	real	life	examples	in	this	space	merging	public	datasets	but	also	
showcasing	how	internal	land/or	tranSMART	sources	are	easily	integrated	and	get	
ready	to	be	used	broadly.	

By	default,	DISQOVER	is	an	open	access	search	engine	with	a	consistent	interface	for	
searching	in	publicly	available	data	sources	and	is	coined	‘public	DISQOVER’.	An	
automated	data	update	process	is	running	to	be	as	much	as	possible	in	sync	with	the	
original	sources.	At	every	moment	it	is	possible	to	show	the	origin	of	every	
individual	data	point	to	guarantee	complete	openness	in	data	provenance.	The	
‘public	DISQOVER’	system	can	be	interpreted	as	a	semantic	web	enriched	mirror	of	
all	comprised	data	sources.	This	is	necessary	to	generate	a	fast	and	interactive	web	
application,	which	is	currently	not	possible	with	a	classical	semantic	web	data	
federation	approach	due	to	the	technical	issues	with	responsiveness	and	the	lack	of	
data	sources	available	as	accessible	semantic	data	endpoints.	

A	second	DISQOVER	type	is	the	‘internal	DISQOVER’	setup.	The	search	engine	can	be	
installed	inside	an	organization	with	additional	features	like	user	group	
management	for	data	access	and	data	visualization.	An	‘internal	DISQOVER’	allows	
to	structure,	integrate,	link	and	visualize	internal	data	from	an	organization.	The	
system	keeps	the	information	completely	secure	from	the	outside	world.	Moreover,	
an	‘internal	DISQOVER’	can	communicate	with	the	central	‘public	DISQOVER’	using	a	
specifically	developed	‘DISQOVER	data	federation’	system	to	enrich	this	internal	
data	with	the	wealth	of	already	structured	public	data.	With	this	approach,	no	
internal	information	is	transferred	to	the	pubic	DISQOVER.	There	is	only	a	
unidirectional	data	flow	from	the	public	system	to	the	internal	DISQOVER.	

The	system	has	the	flexibility	and	can	be	configured	to	integrate	different	data	
sources.	Configuration	scripts	give	you	full	control	how	to	integrate	the	data,	what	
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and	how	to	show	the	data	for	specific	user	roles.	The	data	can	be	easily	filtered	via	
customizable	filters	or	facets.	Specific	facet	visualizations	are	available	for	different	
types	of	information:	geographical	maps	for	locations,	tree	view	for	hierarchical	
data,	timelines	for	dates	etc.		

The	primary	goal	is	to	allow	every	user	to	find	what	she/he	needs	in	a	way	that	a	
user	understands	best,	via	his	or	her/his	understanding	of	the	knowledge	domain	
and	without	having	to	know	the	exacts	search	terms	or	labels.	And	results	even	link	
out	t	interesting	(research	or	health-economics)	information	outside	of	the	user’s	
expertise.	DISQOVER	is	a	platform	usable	for	all	stakeholders	in	biomedical	research	
and	healthcare	with	a	strong	focus	on	the	user	experience	and	the	user	interface	
where	we	strive	to	make	‘everybody	a	data	scientist’.	
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A Clinical Data Analytics Workbench to Streamline Analytics Tasks and 
Visualize Key Results 

Yiqin Yu, MS1, Xiang Li, PhD1, Haifeng Liu, PhD1, Bibo Hao, MS1, Wen Sun, PhD1, Guotong Xie, PhD1 
1IBM Research, Beijing, China

Abstract 

Recent advances in big data and machine learning related technologies provide powerful capabilities for clinical 
researchers to gain insights from massive healthcare data. However, compared to traditional clinical research 
methods, what kind of analytical results are new, and most importantly, with meaningful clinical implications, is still 
unclear. This demo introduces the Clinical Data Analytics Workbench, which streamlines different kinds of clinical 
data analytics tasks, and visualizes the key results to provide clinical insights. With this workbench, clinical 
researchers could leverage the power of modern (big) data analysis capabilities, and enhance the implementation of 
their clinical research tasks. 

Introduction 

Recent advances in big data and machine learning related technologies provide powerful capabilities for clinical 
researchers to gain insights from massive healthcare data [1]. Comparing to performing clinical data analysis in 
conventional software or tools (e.g., SPSS, SAS), developing with Python, R, etc. enables researchers to take 
advantage of big data analytics tools (e.g., Apache Spark) and have more flexible control over the analytics process. 
However, comparing to traditional clinical research methods, clinical researchers still have questions. First, what 
kind of new results can be generated from modern technologies? Second, do these new results contain meaningful 
and explicable clinical implications? This demo introduces a web-based application named Clinical Data Analytics 
Workbench, which design and streamlines different kinds of clinical data analytics tasks, and visualizes the key 
results to provide clinical insights. With this workbench, clinical researchers can leverage the power of modern (big) 
data analysis capabilities, and enhance the implementation of their clinical research tasks. 

Streamlining of Clinical Data Analytics Tasks 

The design of different types of clinical data analytics tasks are based on the discussion between clinical researchers 
in hospitals and data scientists who have computer science and statistics background. Focusing on structured clinical 
data such as Electronic Medical Record and Registry data, there are a set of clinical research tasks been identified, 
including risk prediction, patient stratification, treatment effectiveness analysis, and clinical pathway analysis. The 
different types of tasks are initially raised by clinical researchers and further confirmed by the results of data 
exploration. For example, after exploring the distribution of different disease events, certain disease is selected as 
the target outcome of a risk prediction task. In this demo we will focusing on the first two tasks. The dataset used in 
the demo contains registry data for about 17,000 patients, who were in treatment in the department of cardiology of 
a hospital in Beijing, China from Aug, 2011 to Jun, 2015. 

Figure 1. Key results visualization in risk prediction task. (a) Design of the risk prediction task. (b) model 
comparison on AUROC. (c) Exploration of contribution of factors in categories. 

Visualization of Risk Prediction Task 

The Risk Prediction task aims to build a sound predictive model between the target outcome and related features. 
The task is streamlined into four steps: 1) Task Design. Task Design (Figure 1(a)) specifies the target outcome of 
the prediction task, the population of interest, and interested features which should be used for prediction. 2) 
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Predictive Modeling. This step builds risk models based on different prediction/classification algorithms and 
compares the performance of these models (Figure 1(b)). The most commonly used measurement is the area under 
the receiver operating characteristics curve (AUROC). 3) Factor Exploration. The results of this step are critical 
for clinical researchers, as the ultimate goal of a risk prediction task is to find factors with clinical implications for 
the target outcome (Figure 1(c)). Traditional risk prediction tasks usually have limited number of factors and report 
the contribution of them in a pie chat. By using modern technologies, theoretically unlimited number of factors can 
be analyzed and involved in the risk model. Here we use a donut chart with two layers to represent the factors. The 
inner layer summarizes the distribution of contribution in categories such as clinical, non-clinical and treatment, 
which provides a high level view about what kind of factors impact the outcome mostly. And the outer layer shows 
the contribution for each factor. 4) Risk Distribution. This step calculates the risk score for each case (patient) in 
the dataset with the selected risk model, and shows the distribution in different risk levels.  

Visualization of Patient Stratification Task 

The Patient Stratification task tries to stratify patients in a cohort into multiple groups by cluster analysis algorithms, 
which might have different health conditions and will lead to different treatment options. Steps include: 1) Cluster 
Projection. After the population of interest is defined, cluster analyses are run and each case is assigned to certain 
group (cluster). All cases are projected to a 3-dimention space and visualized in a 3-D scatter chart as well as their 
group label. 2) Group Characteristics. The characteristics of each group contain two main information (Figure 2): 
1) the distribution of all features used in the clustering algorithm, which is illustrated in a spider chart, and 2) the
leading features that have a particularly high distribution on the group (red colored features), or vice versa (green 
colored features). 3) Grouping Rules Mining. In a real hospital environment, physicians usually perform patient 
stratification by rules. For this purpose, grouping rules are mined by a decision tree according to the clustering 
results (Figure 3(a)), which can be treated as a provenance of how the rules are generated by involving important 
features into the decision tree one by one. The integrated rules are listed by groups as well as the patient number and 
confidence score (Figure 3(b)). 

Figure 2. Group characteristics visualization in patient stratification task. 

Figure 3. Group characteristics visualization in patient stratification task. (a) The decision tree for grouping patients 
according to the cluster analysis results. (b) Summarized grouping rules derived from the decision tree. 
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Demo: Peeking into Patterns of Clinical Event Sequences with Peekquence

Bum Chul Kwon1, Janu Verma1, Adam Perer1
1 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

1 Introduction

Finding temporal patterns in longitudinal event sequences is a challenging task, as the volume and variety of events
often make it difficult to extract salient patterns. In response to this challenge, data scientists have turned to machine
learning, known as frequent sequence mining (FSM) techniques, to automatically detect the most common sequences
of events to unearth interesting patterns. For instance, Frequence [4], Care Pathway Explorer [5], and TimeStitch [6]
all use frequent sequence mining techniques to find frequent sequences of events.

However, these algorithms often require users to specify a support threshold that, if too high, will yield only a few
patterns, or if too low, will yield numerous patterns that may be difficult for data scientists to determine the interesting
sequences from the mundane. In this demo, we aim to make the results of frequent sequence mining algorithms more
interpretable by giving end-users powerful ways to explore the data.

Our novel visual analytics system, Peekquence [1], integrates several new techniques that include: 1) powerful ways to
navigate the patterns by sorting with metrics relevant to users (variability, correlation to outcome, etc), 2) integration
of patterns with patient timelines, so users can understand where the patterns occur in the actual data, and 3) overviews
the summarize the most common events in the patterns.

Figure 1: Peekquence consists of four views: (A) the pattern list view showing patterns mined from SPAM with event
sequences (colored circles with letters) as well as bars of patients with the ratio of case and control labels (diagnosis of
a disease); (B) the sequence network view showing the frequency of event type co-occurrences within mined patterns;
(C) the event co-occurrence histogram view showing the frequency of events co-occurring for a selected pattern; (D)
the patient timeline view showing patients’ event sequences that match the selected pattern.

Demo #4
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2 Peekquence

The core visual unit of Peekquence are mined patterns, rather than events. As patterns may contain many different
event types and be composed of long event sequences, visualization techniques based on sankey diagrams (a la Care-
Flow [3]) or aggregated vertical bars (a la EventFlow [2]) tend to suffer from visual complexity without user-controlled
filters based on domain expertise. Instead, we opted for a simpler visualization technique: a list of patterns, made up
of event glyphs that visually encode each event type in the pattern. The event glyphs are visually encoded as circles,
colored according to an categorical ontology, and labeled with an abbreviation of the event type’s name. All of the four
views in Peekquence, shown in Figure 1, use this glyph as the common visual element. In addition to a list of patterns
(Figure 1A), there is an overview of common event types in the patterns (Figure 1B), histograms that summarize event
types that co-occur with the patterns (Figure 1C), and a coordinated view to the actual patient timelines to understand
how the mined patterns manifest in the actual data (Figure 1D).

In Figure 1, Peekquence is demonstrated on mined patterns from a cohort of patients with diagnoses of both congestive
heart failure (CHF) and chronic obstructive pulmonary disease (COPD). Of these patients, some are cases that were
hospitalized and the remaining are matched controls who have the disease but were not hospitalized. The goal is to
use Peekquence to understand if the patients with CHF and COPD that were hospitalized have any distinct patterns
of treatments compared to those who were not hospitalizd. For these patients, one year of data is mined after their
diagnoses of CHF. In this figure, only treatment events are mined, but the system is capable of merging multiple types
of events (e.g. diagnoses, procedures, and labs).

Peekquence has led to interesting discoveries of the benefits and problems by relying on mined patterns as the main unit
of visualization. There was no data curation done to the event types loaded into the user interface, but the algorithm
was able to surface highly relevant types due to their prominence among patients with CHF and COPD.

3 Conclusion

In this paper, we presented Peekquence, a visual analytics system which aims to increase the interpretability of frequent
sequence mining algorithms. The four views combined with interactions provide useful functionalities for users to
make sense of patterns as well as their occurrences within patients’ records.
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Demo	#5	
	

Using	Advanced	Analytics	and	Visualization	to	Detect	HIPAA	
Violations	

	

Nick	Culbertson	and	Robert	Lord	

Protenus,	Inc	

	

Abstract:	
Patient	privacy	violations	in	the	EHR	are	all-too-common	occurrences,	but	

accurately	detecting	them	is	a	huge	and	thus	far	nearly-insurmountable	challenge.	

Examples	abound	of	both	everyday	and	truly	horrific	violations	of	privacy	that	occur	

in	EHRs,	ranging	from	co-workers	snooping	on	each	other,	to	criminal	networks	

systematically	mining	patient	identity	data	through	bribing	clinical	staff.	Detecting	

these	inappropriate	accesses	to	patient	data	is	a	huge	challenge,	made	even	more	

difficult	by	the	current	dearth	of	robust,	big-data	solutions	driven	by	modern	

technology	and	contemporary	visualization	tools.		

	

The	Protenus	platform	delivers	a	new	approach	to	the	patient	privacy	monitoring	

challenge.	Critically	and	uniquely,	Protenus	incorporates	an	understanding	of	the	

complex	clinical	environment,	as	well	as	next-generation	visualizations	that	

demonstrate	the	difference	between	appropriate	and	aberrant	behavior.	This	

advanced	approach	to	privacy	fosters	a	renewed	sense	of	organizational	

cooperation,	decreasing	undue	stresses	on	compliance	and	security	teams	and	

replacing	traditional	compliance	technology.	Protenus	streamlines	threat	detection	

and	resolution	cycles	from	months	to	a	matter	of	minutes.		

	

The	authors	seek	to	demonstrate	their	platform's	methods	and	visualizations	to	

provide	a	different	perspective	on	the	ability	of	clinical	informatics	and	health	data	

visualization	to	play	a	whole	new	role	in	privacy	and	security.		 	
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Demo	#6	

	
Visualizing	State-Level	Chronic	Disease	Indicators	as	a	Prelude	to	

Insight	on	Meeting	Healthy	People	2020	Objectives	
	

Umesh	Singh1,	Victoria	Wangia-Anderson2,	
1University	of	Cincinnati	College	of	Medicine,	Cincinnati,	OH	

2University	of	Cincinnati	College	of	Allied	Health	Sciences,	Cincinnati,	OH	
	
	
Abstract:	
	Visualization	of	the	community	health	status	and	chronic	disease	indicators	within	
the	most	comprehensive	and	reliable	datasets	provided	by	CDC's	Division	of	Population	
Health	provides	strategic	decision	making	on	future	action	plans	for	appropriate	
healthcare	resource	allocation,	in	order	to	lower	disease	burden	and	meet	the	Healthy	
People	2020	objectives,	an	initiative	taken	by	DHHS	to	identify	nationwide	health	
improvement	priorities	and	understand	the	determinants	of	health,	disease	and	
disability.	A	user-friendly	visualization	tool	is	applied	to	the	community	health	Status	
Indicators	(CDC)	data	to	generate	meaningful	insight	and	development	of	action	plans	
by	concerned	officials.	
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Demo	#7:	
	

Visualizing	Patient	Genomic	Data	and	Predicted	Drug	Sensitivities	
in	the	SMART	Precision	Cancer	Medicine	Application	

	
Krysten	Harvey1	and	Jeremy	L.	Warner2,3,4	

	
1Department	of	Computer	Science,	Vanderbilt	University;	
2Division	of	Hematology/Oncology,	Vanderbilt	University;	

3Department	of	Biomedical	Informatics,	Vanderbilt	University;	
4Vanderbilt-Ingram	Cancer	Center,	Vanderbilt	University	Medical	Center	

	
	
Abstract:	
The	SMART	Precision	Cancer	Medicine	application	compares	patient	variants	of	
identified	cancer	genes	to	frequencies	at	the	population-level.	The	D3	Javascript	
library	was	utilized	to	encapsulate	the	results	of	these	comparisons	along	with	
suggested	drug	efficacies	within	powerful	visualizations	that	are	both	interactive	and	
intuitive.	The	aim	of	this	application	is	to	provide	support	for	more	personalized	
decision	making	at	the	point-of-care	during	cancer	treatment.	
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Demo	#8:	
	

Genetics-based	Motivation	Viz	(“GMV”):	Visualizing	Direct-to-
Consumer	Genetic	Test	Results	To	Empower	Health	Behavior	

Change	
	

Kenyon	Crowley1,2,3,4,	Joohee	Choi1,	Rohan	Bondili1	
	

1University	of	Maryland	iSchool,	College	Park,	MD;		
2Human-Computer	Interaction	Lab	(HCIL),	College	Park,	MD;	

3Robert	H.	Smith	School	of	Business,	College	Park,	MD;	
4Center	for	Health	Information	&	Decision	Systems	(CHIDS),	College	Park,	MD	

	
	
Abstract	
The	human	genome	is	a	complex	mix	of	approximately	10	million	SNPs	(single	
nucleotide	polymorphisms).	Each	SNP	represents	a	difference	in	a	single	DNA	
building	block	and	may	be	correlated	with	traits	and	health	conditions.	The	
translation	of	complex	multidimensional	genetic	data	into	actionable	health	
behavior	information	to	prevent	disease	is	a	difficult	task.	Our	team	developed	the	
Genetics-based	Motivation	Viz	(“GMV”)	in	order	to	help	individuals	and	health	
practitioners	identify,	motivate	and	prioritize	genetics-based	health	behavior	
change	opportunities.	GMV	incorporates	an	abstraction	of	a	validated	health	
behavior	change	framework,	in	combination	with	an	individual’s	direct-toconsumer	
genetic	testing	(DTC-GT)	results	(including	their	health	condition	risk,	moderating	
risk	factors,	strength	of	evidence	supporting	claim),	juxtaposed	with	their	self-
reported	ease	of	doing	certain	health	behaviors	(such	as	eating	a	low	fat	diet).	GMV	
was	deployed	in	a	web	browser	and	evaluated	via	a	survey	with	16	respondents.	
The	majority	of	respondents	indicated	GMV	was	at	least	somewhat	useful	and	
understandable,	but	also	identified	areas	for	future	work.	With	further	
development,	GMV	may	be	effective	in	translating	genomic	data	into	meaningful	
health	behavior	change	information	useful	for	individuals	and	health	practitioners.	
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Demo	#9:	
	

Rapid,	Iterative	Design	of	reCAP,	the	REal-Time	Care	Analysis	
Platform,	to	Support	Care	Redesign	

	
Michael	A.	Ripperger	and	Colin	G.	Walsh	

Vanderbilt	University	Medical	Center,	Nashville,	Tennessee	
	
	
Abstract:	
	Healthcare	redesign	has	relied	largely	on	retrospective,	ad-hoc,	batched	analyses	to	
determine	whether	clinical	process	interventions	have	positively	impacted	care.	These	
approaches	may	be	1)	slow;	2)	hard	to	scale;	3)	not	readily	reproducible;	and	4)	may	
only	account	for	patient-level	outcomes	and	process	metrics,	not	metrics	that	define	
whether	care	redesign	is	happening	as	intended.	To	solve	this	problem	and	to	support	
a	care	redesign	effort	aimed	at	optimizing	utilization	patterns	for	medically	and	
psychosocially	complex	patients,	a	REal-time	Care	Analysis	Platform	(reCAP)	was	
rapidly,	iteratively	designed	through	multiple	design	sessions	with	clinicians	and	
stakeholders	in	the	form	of	a	readily-accessible	web	application.	reCAP	was	created	
concurrently	with	the	implementation	of	a	care	pilot	using	modern,	open-source	
software	frameworks.	The	developed	dashboard	prototype	provides	user-centered,	
role-specific	visual	analyses	on	filterable,	dynamic	patient	and	cohort-level	data	from	
electronic	health	records,	audit	logs,	and	financial	data.	Thematic	analysis	of	initial	
qualitative	evaluation	data	identify	strengths	in	usability,	data	manipulation,	and	
supporting	information	needs.		
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Demo	#10:	
	

Visual	Summarization	of	Longitudinal	Clinical	Trajectories	to	
Improve	Population	Health	Analysis	

	
Filip	Dabek	and	Jesus	J	Caban	

	
Walter	Reed	National	Military	Medical	Center	

Department	of	Defense	
	
	
Abstract:	
Summarizing	a	collection	of	temporal	sequences	is	a	difficult	task	given	the	irregular	
and	variable	patterns	often	found	in	longitudinal	events.	Across	a	wide	array	of	
domains,	researchers	and	analysts	seek	to	determine	ways	to	identify	common	
temporal	paths,	to	build	trajectories	between	individual	events,	and	to	understand	the	
relationships	between	different	events.	While	these	tasks	continue	to	be	difficult	on	
small	and	structured	datasets,	they	are	increased	tenfold	on	temporal	sequences	that	
are	noisy,	irregular,	and	voluminous	in	size.	Approaches	that	enable	analysis	of	
temporal	sequences	of	large	or	small,	noisy	or	clean,	irregular	or	structured	datasets	
open	new	opportunities	to	identify	key	information	embedded	within	longitudinal	
data.	We	demonstrate	a	scalable	framework	that	has	been	designed	to	visually	explore	
large	collections	of	temporal	sequences	by	combining	advanced	event	mining	
algorithms	with	visualization	techniques	to	overcome	some	of	the	challenges	and	
complexities	of	the	data.	The	system	has	been	tested	with	a	comprehensive	clinical	
dataset	of	98,342	patients	and	8.7	million	longitudinal	events	showing	the	
effectiveness	of	the	techniques	within	large	and	complex	datasets.	
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