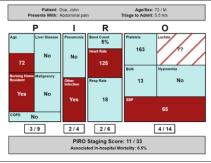
Signaling Sepsis: Conveying severity through novel alert design

Laura Schubel¹, Robin Littlejohn, MS¹, Joseph Blumenthal¹, Ryan Arnold, MD, MS², Muge Capan, PhD³, Ella Franklin, RN¹, F. Jacob Seagull, PhD⁴, Ken Catchpole, PhD⁵, Kristen E. Miller, DrPH, CPPS¹

¹National Center for Human Factors in Healthcare, MedStar Health, Washington DC; ²Drexel University School of Medicine, Philadelphia; Pennsylvania; ³Lebow College of Business, Drexel University, Philadelphia, Pennsylvania; ⁴Department of Learning Health Sciences, University of Michigan, Ann Arbor, MI; ⁵Clinical Practice and Human Factors, Medical University of South Carolina, Charleston, SC

Problem Addressed


prediction.

Methods

Our research team developed four graphical model displays of two popular sepsis scoring systems that not only account for patient risk, but also indicate *severity* of

symptoms and associated mortality rates, both through color and design. Our models use two visual display types (text display and figure display) and two levels of content where level of content refers to the number of components required to calculate the score. The alerts were designed using an adapted

treemap to visually display a large amount of hierarchical data in a rectangular shape. Treemap is a type of visual display described as a space-constrained visualization of hierarchical structures.

Results

The intent of this work was to develop the models that will be used in future work to solicit performance and preference from clinicians. These models are currently being evaluated by physicians and nurses in a larger research effort to optimize alert design to improve the collective awareness of high-risk populations and develop a relevant point-of-care clinical decision support system for sepsis. Alert simulations orchestrated through a mobile usability lab assess the impact of enhanced visual display models and reveal more about the decision making process based on provider response. The ultimate purpose of this work is to inform EHR alert optimization and clinical practice workflow to support the efficient, effective, and timely delivery of high quality sepsis care. By providing timely patient-focused care and early intervention to support patient forecasting, we expect improved CDS will improve mortality, decrease organ failure, and reduce utilization of health care resources (e.g., hospital length of stay, long term care).

References

- 1. Cash JJ. Alert fatigue. American Journal of Health-System Pharmacy. 2009 Dec 1;66(23):2098-101.
- 2. Marcilly R, Ammenwerth E, Vasseur F, Roehrer E, Beuscart-Zéphir MC. Usability flaws of medication-related alerting functions: A systematic qualitative review. Journal of biomedical informatics. 2015 Jun 1;55:260-71.
- 3. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. Bmj. 2005 Mar 31;330(7494):765.

- 4. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016;315(8):762-774. doi:10.1001/jama.2016.0288.
- 5. Iwashyna TJ, Cooke CR, Wunsch H, Kahn JM. Population burden of long-term survivorship after severe sepsis in Older Americans. J Am Geriatr Soc. 2012;60(6):1070-1077. doi:10.1111/j.1532-5415.2012.03989.x.
- 6. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41(5):1167-1174. doi:10.1097/CCM.0b013e31827c09f8.