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Figure 1: The COVID-19 Risk Explorer dashboard for exploring risk patterns that drive COVID-19 death rates in the US. On the the
top left is an interactive geomap of the US counties shaded by their COVID-19 death rate. A county can be selected by clicking
the mouse on its map location. Here, the user selected Yuma, AZ, marked by an orange outline. The bottom panel has the risk
pattern browser which represents all the risk patterns as tiles, shaded by their COVID-19 death rate. Only the patterns relevant to
the selected county (Yuma, AZ) are shaded. Users can select a risk pattern by clicking the mouse on a pattern tile. Here the user
selected the first pattern, marked by an orange outline. All counties that share this pattern are then shaded on the map. The top
right panel shows information about the selected county while the panel below it offers information about the selected pattern.

ABSTRACT

Social vulnerability is the susceptibility of a community to be
adversely impacted by natural hazards and public health emer-
gencies, such as drought, earthquakes, flooding, virus outbreaks,
and the like. Climate change is at the root of many recent natural
hazards while the COVID-19 pandemic is still an active threat.
Social vulnerability also refers to resilience, or the ability to
recover from such adverse events. To gauge the many aspects
of social vulnerability the US Center of Disease Control (CDC)
has subdivided social vulnerabilities into distinct themes, such as
socioeconomic status, household composition, and others. Knowing
a community’s social vulnerabilities can help policymakers and
responders to recognize risks to community health, prepare for
possible hazards, or recover from disasters. In this paper we study
social vulnerabilities on the US county level and present research
that suggests that there are certain combinations, or patterns, of
social vulnerability indicators into which US counties can be
grouped. We then present an interactive dashboard that allows
analysts to explore these patterns in various ways. We demonstrate
our methodology using COVID-19 death rate as the hazard and
show that the patterns we identified have high predictive capabilities
of the pandemic’s local impact.
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1 INTRODUCTION

Social vulnerability gauges the socioeconomic and demographic fac-
tors that affect the resilience of a community to external disastrous
events affecting human health, called stresses. These stresses can
range from natural or human-caused disasters to disease outbreaks.
A socially vulnerable community is less likely to recover and more
likely to perish as a result of these stresses, and by reducing social
vulnerability, one can lower both human suffering and economic
losses. Knowing the specific social vulnerabilities for a given com-
munity can help emergency response planners and public health
officials to quickly respond when a specific disaster strikes and to
build long-term residence for it to weaken its potential impact.

The concept of social vulnerability has been studied world-wide
and various measures have been established. In the US, the Agency
for Toxic Substances and Disease Registry (ATSDR) and the Center
of Disease Control (CDC) have used US Census data to determine a
Social Vulnerability Index (SVI) for every US census tract. Census
tracts are subdivisions of US counties and there are 3,006 counties in
the US. The CDC/ATSDR SVI ranks each tract on 15 social factors
which can be grouped into into four related themes:

• Socioeconomic status: below poverty, unemployed, income,
no high school diploma

• Household composition & disability: aged 65 or older, aged
17 or younger, older than age 5 with a disability, single-parent
households

• Minority & language: minority, speak English “less than well”
• Housing type & transportation: multi-unit structures, mobile

homes, crowding, no vehicle, group quarters



Using a dataset from Kaggle [11] we have expanded this list to
a carefully curated set of 241 factors that refines these measures to
demographic features, such as race and gender. and adds further
health and social risks, such as smoking and drug use habits, teenage
pregnancies, sleep deprivedness, housing debt, vaccination rate, and
many others. The Kaggle dataset is composed of data collected from
200 publicly available COVID-19 related datasets, using sources like
Johns Hopkins, the WHO, the World Bank, the New York Times,
and many others. We found several redundancies in this dataset and
carefully trimmed it to the set of 241 factors which are the basis of
the methodology and study reported in this paper.

Visualizing the social vulnerabilities as a choropleth map can be
helpful to planners, responders, and policymakers to compare the
social vulnerability index across locations and so better understand
which communities are most susceptible to natural disasters and
disease outbreaks. Most prominent is the CDC’s own SVI Inter-
active Map [10] which colors counties by their overall SVI score -
the score is a value between 0 (lowest vulnerability) to 1 (highest
vulnerability); clicking the mouse on a specific county pops up a
scorecard that lists the score for each theme as a bar chart. The US
Federal Emergency Management Agency (FEMA) [6] provides a se-
ries of choropleth maps that aside from maps for social vulnerability
and community resilience also allows users to produce maps for the
risks and expected annualized loss for a variety of natural hazards,
such as flooding, lightning, tornadoes, and many others. A service
called County Health Rankings [3] allows users to produce detailed
factor-based comparative reports with visualizations for US states at
the granularity of counties. There are also several other institutions,
such as NASA, that produce factor-based SVI choropleth maps.

To the best of our knowledge there is no work thus far that allows
users to explore the multivariate nature of social vulnerabilities more
directly, in the form of patterns of multiple interacting factors. The
currently available maps all require users to switch from map to
map or perform side by side comparison to assess these correlations.
Our pattern analysis groups counties, which are not necessarily geo-
graphically related, in terms of vulnerability factors that cooperate
in making these counties more (or less) susceptible to a certain
target hazard. Enabling analysts to explore these patterns and the
locations of the affected counties on a single choropleth map allows
for a deeper and more efficient analysis. This paper describes the
outcomes of our research geared toward achieving such a map.

Our paper is organized as follows. Section 2 presents related
work. Section 3 describes our pattern analysis. Section 4 explains
our dashboard that allows users to explore these patterns in the
context of the US counties. Section 5 offers a conclusion. The
appendix presents a case study.

2 RELATED WORK

Unlike previous large-scale global health crises the COVID-19 pan-
demic arrived in an era with an ubiquity of machine learning tools
and a widely developed information technology infrastructure. The
urgency of COVID-19 did not only boost efforts in biotech to de-
velop vaccines and medical treatments at rapid speeds, but it also
invigorated research in the predictive modeling of the spread of the
virus and in the development of visual information portals to inform
policy makers and the general public on death tolls, infections, and
the like. As such the COVID-19 health emergency brought about
much of the most recent related work on visual tools for public
health monitoring and risk assessment.

2.1 Modeling and Prediction
Many predictive modeling approaches (such as [13], [24]) are based
on the mechanistic Susceptible–Exposed–Infectious–Recovered
(SEIR) compartment simulation model that, at the process level,
mimics the way COVID-19 spreads. Mechanistic models are at-
tractive since they allow one to simulate the effects of different

mitigation measures, such as quarantining, social distancing, school
closings, and so on. However, the model’s many parameters require
accurate estimates of the population in each compartment and their
transition rates which can be challenging due to the uncertainties
involved.

Popular are also statistical forecasting models such as that by U
Washington’s Institute for Health Metric and Education (IHME) [1].
It uses a mixed effects nonlinear regression model to fit a curve to
data from world-wide geographical locations to create projections of
infections, death rates, and health resource demands at the local level.
Other approaches use more conventional statistical models, such
as correlation and linear regression to understand the influence of
certain socio-economic factors, such as county-level health variables,
urban density, poverty, commuting, and so on, while controlling for
other effects, such as race [18]. Typically these results are obtained
via standard step-wise modeling approaches that are not overly
scalable in the number of factors and local regions, making the
discovery of significant statistical relationships rather tedious.

Recognizing that models often produce a wide range of predictive
forecasts, ensemble methods have recently become popular (see for
e.g. [17]). Ensemble methods combine different individual models
together and weigh their outcomes into a unified forecast. This can
make predictions more robust and add stability to the process.

2.2 Visualization

A primary source of information has been the Coronavirus Resource
Center at Johns Hopkins University [4]. They constructed dash-
boards for the US and for the entire world that each showed the
respective geographic maps overlaid with visual representations of
the numbers of people tested positive alongside various test and
death statics, leader boards, and temporal growth curve ensembles
that compare regions at various scales in terms of the increase of test
cases and deaths. Other dashboards and browser-based interactive
visualization of COVID-19 related data have been made available
by the companies Tableau [7], TIBCO [2], the open source project
Nextstrain [9], newspapers like the New York Times, and others.
These dashboards and visualizations illuminate specific aspects re-
lated to the outbreak, such as race, hospital overcrowding, test statis-
tics by state, mask compliance by county, unemployment rates and
claims, economic inequality, pathogen evolution, and more.

The IHME COVID-19 forcasting model has also become quite
popular due to its simple yet effective interactive visual dashboard
tools [5]. However, IHME is also known for its interactive ‘US
Health Map — Viz Hub’ [8]. This visual interface provides a menu
that allows users to select among four outcome or risk variables,
i.e. life expectancy, mortality rate, mortality risk, and others. Users
can then choose one of many diseases and health determinants and
display the outcome or risk on a choropleth map for states or counties.
However, similar to other maps, their map also can only display one
quantity at a time and so enables comparisons only on a factor-
wise basis. While juxtaposition [14] of several maps can facilitate
comparisons, it remains difficult to recognize general correlations
or groupings among the variables. Our geo-display enables it by
pairing pattern analysis with a set of information displays.

A recent visual interface is EnsembleVis [21] which is a web-
based geomap interface to view and compare model forecasts with
the ground truth on the US county level. It allows users to navigate
the ensemble models and so gain a better understanding of the ranges
and uncertainties. We also display our data on the county level but
our focus is mainly to explain why certain health risks occur, that is,
what are the social vulnerabilities that expose certain communities to
greater risk. While our method learns these risks from communities
that have already been exposed, there are others that fit this patterns
as well but have not suffered the same fate as yet. As such the
patterns we identify can also be used to predict or at least alert these
communities and associated responders.



Figure 2: Scatterplot of a 3D pattern found in May 2020. The y-axis (target attribute) is the observed COVID-19 death rate and each point is a US
county. Each image shows the 2D projection into the plot’s pattern attribute and the target attribute after culling the points into the subspace
defined by the pattern attribute of the plot on its immediate left. The yellow points are inside the plot’s pattern subspace and the purple points are
outside of it. It can be seen that adding the third attribute is sufficient to eliminate all purple points. The culling of points is the reason why there
are progressively fewer points in the plots from left to right. The green bars on top show how much each of the subspace attributes (top to bottom,
and left to right in the plots: county poverty rate, % population aged over 65, population density) contributes the definition of the pattern.

3 OUR APPROACH: PATTERN MINING AND DASHBOARD

In the following we summarize our pattern mining approach and then
focus on the dashboard we designed for exploring these patterns.

3.1 Our Pattern Mining Approach
Our approach is rooted in pattern analysis, a well-studied area of
research in data science and AI [19]. A pattern is a subgroup of
data points that share similar characteristics, or features [12]. For
example, the data could be a set of counties that have a similar socio-
economic make-up. In our example each county has 241 features,
e.g., % adults w/excessive drinking habits, % adults in frequent
mental distress, unemployment rate, etc. These 241 features then
result in a 241-D feature space which is typically fairly sparse.

We have devised a pattern mining engine that automatically
searches this sparse feature space for regions occupied with similar
counties which all respond in a similar way to a given target variable
of interest. Some results of our pattern mining approach are reported
in [20]. In that work we specifically focused on COVID-19 and the
visualizations consisted of a simple choropleth map which did not
offer any capabilities to explore the patterns in terms of their features.
We now report on a dedicated dashboard that puts the human in the
loop and allows for detailed interrogations.

In our prior work we sought to identify the socio-economic con-
ditions that underlie higher than average COVID-19 death rates, and
so our target variable was a county’s COVID-19 deaths rate. We
note that counties that are considered similar do not need to be geo-
graphically connected; they just need to have similar characteristics
in terms of their feature values. A unique property of a pattern is
that it fits inside a hypercube with well-defined value ranges of the
features that describe it. This property and its inherent low dimen-
sionality [22], even when the overall feature space is not, makes
them easy to understand and explain. While deep neural networks,
random forests, etc. also learn low-D representations, these are not
easily described in terms of the native features. Hence, these types
of architectures are commonly referred to as black-box AI while
pattern analysis is an explainable AI approach.

Concretely, given a dataset with attributes {A1A2....AmP} with
P being an attribute of interest, such as COVID-19 death rate, the
goal of pattern mining is to find a hypercube (or pattern) consisting
of constraints of the form Ai ∈ [vl ,vr] for i ∈ [1...m] (for example,
age > 45, race = Asian), where the points within the pattern are
“interesting.” For our purposes, a pattern of counties will be consid-
ered interesting if it is associated with a COVID-19 death rate that
is higher on average than the US county average. The definition of
what constitutes a consistently interesting pattern is based primarily

Figure 3: The locations of the counties in the pattern of Fig. 2. colored
by COVID-19 death rate. The newly disease-stricken counties in
June 2020 (inside the dotted ellipses but also elsewhere) are counties
located in the bottom of May 2020’s scatterplot in Fig. 2 or not yet
visualized there, but correctly predicted to get hit soon.

on statistical hypothesis testing. For numerical attributes, we use
the Mann-Whitney test [23] to account for the often non-parametric
nature of the data, while for a binary target attribute, we use the
χ2 test for independence. Extracting the patterns requires extensive
search; we use the FP-growth algorithm [16] which is fairly efficient
as it only requires scanning the full dataset twice during the mining.

3.2 Our Pattern Mining: A Closer Look
For our prior COVID-19 study we used the 241-D dataset mentioned
in the introduction and used COVID-19 death rate in each US county
as the target variable. We found 297 2D and 3D patterns in May
2020. Fig. 2 visualizes one of them, a 3D pattern defined by high
poverty rate, high percentage of senior citizens, and low population
density. These three variables were sufficient to confirm the sta-
tistical significance for the elevated death rate average. The figure
caption explains the formation of the pattern in greater detail.

Let us have a closer look at the plot on the very right of Fig. 2
which shows the projection of US counties into the pattern’s 3rd
attribute (yellow points). We notice that most US counties in the
pattern have a death rate above the US average (and the pattern’s
average itself is also above the US average which makes the pattern
”interesting”). But we also notice that there are a few US counties
that are below the US average bar; they have a death rate below the
US average. This can mean that there are other latent (unmeasured)
factors that protected the counties from contracting the virus. But it
can also mean that these counties were not yet hit by the COVID-19
wave – recall that May 2020 was very early in the pandemic.

Fig. 3 gives more insight into this. It shows two maps where the
counties with significant death rates are shaded in blue – deeper blue
shades map to higher death rates. Note that we only colored counties
that matched the pattern shown in Fig. 2 (they may also match other
patterns but we did not consider these for this plot). On the left is the



map for May 2020, the month we used to learn our patterns. On the
right we see the corresponding map for the next month, June 2020.
We observe that there are quite a few counties now colored that were
not affected yet in May; see the areas encircled by ellipses, but there
are also new counties appearing in already affected regions.

All these newly affected counties are counties below the average
bar in Fig. 2 and so the pattern was able to predict their destiny.
In fact we observed that for 98% of all our patterns the death rate
growth was 2-3 times higher than the US average; the other 2% grew
at the average pace, none slowed in growth below the US-average.
These trends continued in July. This shows that our patterns are
highly predictive, and at the same time can also explain the socio-
economic conditions for higher-than-average COVID-19 death rate
in an easy to understand manner, in the language of the features.

3.3 Our Interactive Visual Dashboard
Our dashboard is designed for people with varying levels of visu-
alization literacy to help them navigate and examine the patterns
mined with our approach. The dashboard consists of four main
panels - geomap, pattern browser, pattern information, and county
information - that are linked to each other. Each of these panels are
explained in the sections below and also in the caption of Fig. 1.
The data input is a standard CSV file with the data matrix.

Risk Pattern Browser: As discussed in Section 3.1 patterns are
low-D hypercubes, however a collection of patterns can still span a
large number of dimensions. This makes it difficult if not impossible
to devise an easy to understand visual representation to explain a
pattern in its entirety. Thus we choose to represent the collection
of patterns as a list of tiles with each tile representing a pattern as
shown in the bottom panel in Fig. 1. The patterns are ordered from
left to right and top to bottom in descending order of the death rate.
This is re-enforced by coloring the tiles from dark to light blue based
on the COVID-19 death rate. Only the tiles that pertain to a county
selected in the geomap are shaded (more on this below).

Each of these tiles can be clicked which will then trigger updates
to the geomap view to indicate counties to which this pattern belongs
and to the pattern information panel to communicate the pattern
details (discussed below). Additionally, we change the shape of a
selected tile to a circle and give it a yellow border to make it easy for
users to locate the selected tile while their focus switches between
different elements of the dashboard.

Figure 4: The representation of the ranges of features that define a
pattern where the gray bar represents the range of the feature across
the US and the blue bar indicates the range for that pattern. For
example the third feature ‘% minority population’ has a range of 0 to
99.2 across the US but the range of 37.6 to 99.2 is one of the features
of this pattern that drives a higher than average death rate.

Pattern Information: This panel communicates the pattern infor-
mation to the user. A pattern is essentially a set of attributes with
specific ranges. Thus the pattern information panel reports these
ranges to the user while placing them in the context of the global
range of the dimension across all data points, in this case all counties.
To visualize these ranges, we make use of a bullet chart style visu-
alization that has been shown to be easy-to-understand by a wide
audience [15]. An example is shown in Fig. 4. Here each dimen-
sion’s range is represented as a horizontal bar. The gray portion
of the bar indicates the range across all counties in the US of the

dimension while the blue portion of the bar represents the range
of the dimension that defines this pattern. User can quickly scroll
through these bars and study the various ranges that define patterns.

Geomap View: This panel consists of an interactive county-level
map of the United States (shown in Fig. 1). Each county in the map
is assigned a color based on its COVID-19 death rate. We use a
continuous color scale ranging from dark blue for high death rates
to white for a death rate of zero. Users can click on a county to learn
more about the factors leading to its COVID-19 death rate. Clicking
on a county will trigger an update to the risk pattern browser which
highlights the patterns that the county belongs to and grays out the
rest. Additionally, the county information panel is updated with the
top risk features for that county. We also allow the user to zoom and
pan the map in order to select smaller counties.

County Information: This panel communicates the information of
a county selected by the user via the geomap. As shown in the top
right corner of Fig. 1 the panel reports the current COVID-19 county
death rate as well as the death rate over time. More importantly the
panel communicates the top 3 risk factors for the county. Here the
feature ranking is computed based on the frequency at which those
features appear across all patterns that contain the selected county.
We use the same bullet chart-like visualization used for the pattern
information to visually represent these features. Here again the gray
bars indicate the range of the dimension across all counties in the
US while the blue bars are ranges of the features across all counties
in the selected county’s state. In addition to the ranges shown in the
chart we also add markers for the value of the factor in the county
and the value for the US average. An example is shown in Fig. 5.

Figure 5: A visual representation of the top 3 feature values of a
county in the context of state and US ranges. The gray bar represents
the range of the feature across the US and the blue indicates the
range of that feature across all counties in the county’s state. For
example, the county shown here has an ‘avg. GPA’ of 2.9 (solid black
marker) which is slightly lower than the US average (dotted black
marker). Additionally the US range for the ‘avg. GPA’ is 0 to 4 while
the range of this feature across all counties in the state is 2.4 to 3.7.

4 CONCLUSIONS

We have outlined a methodology that can group socio-economic
indicators of public health into 1-3 factor patterns learnt from ob-
servational data. The patterns can be used by policy makers and
health officials to explain and predict the underlying risk a certain
community has with respect to some natural hazard or public health
emergency. To give easy access to these patterns we devised an
interactive visual dashboard by which the patterns can be explored
in the context of the communities’ geographical locations. While
we have used the early stages of the COVID-19 pandemic to show
an application of our methodology, we believe that its application is
far broader, which is being explored in ongoing work.

While we provide temporal context to our data – the COVID-19
death rate over time - users currently cannot ”roll back” time to
examine the patterns at the selected time frame. This is a fairly
easy implementation and we plan to add this feature in the future. In
addition, while we have used a small cohort of users to gain feedback
during system development, we plan a broader task-based study in
the near future to gain further insight into utility and usability,
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[14] L. Besançon, M. Cooper, A. Ynnerman, and F. Vernier. An evaluation
of visualization methods for population statistics based on choropleth
maps. arXiv preprint arXiv:2005.00324, 2020.

[15] D. Coelho, H. He, M. Baduk, and K. Mueller. Eating with a conscience:
Toward a visual and contextual nutrition facts label. 2020.

[16] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. ACM SIGMOD Record, 29(2):1–12, 2000.
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[19] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional
data: A survey on subspace clustering, pattern-based clustering, and
correlation clustering. ACM Transactions on Knowledge Discovery
from Data (TKKD), 3(1):1–58, 2009.

[20] K. Mueller and E. Papenhausen. Using demographic pattern analysis to
predict covid-19 fatalities on the us county level. Digital Government:
Research and Practice, 2(1):1–11, 2020.

[21] S. Srabanti, G. E. Marai, and F. Miranda. Covid-19 ensemblevis:
Visual analysis of county-level ensemble forecast models. In 2021
IEEE Workshop on Visual Analytics in Healthcare (VAHC), pp. 1–5,
2021.

[22] B. Wang and K. Mueller. Does 3d really make sense for visual cluster
analysis? yes! In 2014 IEEE VIS International Workshop on 3DVis
(3DVis), pp. 37–44. IEEE, 2014.

[23] I. B. Weiner and W. E. Craighead. The corsini encyclopedia of psychol-
ogy, volume 4, vol. 4. John Wiley & Sons, 2010.

[24] Z. Yang, Z. Zeng, K. Wang, S.-S. Wong, W. Liang, M. Zanin, P. Liu,
X. Cao, Z. Gao, Z. Mai, et al. Modified seir and ai prediction of the

epidemics trend of covid-19 in china under public health interventions.
Journal of Thoracic Disease, 12(3):165, 2020.

http://www. healthdata.org/covid
http://www. healthdata.org/covid
https://www.tibco.com/covid19
https://www.tibco.com/covid19
https://www.countyhealthrankings.org
https://www.countyhealthrankings.org
https://www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
https://www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
https://covid19.healthdata.org/united-states-of-america
https://covid19.healthdata.org/united-states-of-america
https://hazards.fema.gov/nri/social-vulnerability
https://hazards.fema.gov/nri/social-vulnerability
https://www.tableau.com/covid-19-coronavirus-data-resources
https://www.tableau.com/covid-19-coronavirus-data-resources
https://vizhub.healthdata.org/subnational/usa
https://vizhub.healthdata.org/subnational/usa
https://nextstrain.org
https://svi.cdc.gov/map.html
https://svi.cdc.gov/map.html
https://www.kaggle.com/datasets/roche-data-science-coalition/uncover
https://www.kaggle.com/datasets/roche-data-science-coalition/uncover


1 

 

APPENDIX 

In this case study we follow Bob, a public health analyst, who uses the COVID-19 Risk Explorer to learn more about the 

susceptibility of local communities to the spread of the COVID-19 virus. It’s December 2020 and a lot has happened. He starts 

up the program and sees the screen below. 

 

Bob observes that the areas that have seen the highest death rates overall are in Texas, Arizona, Montana, North Dakota, Idaho, 

the South, Florida, and the Northern East Coast. Now Bob wonders about the timelines. He selects a darkly colored county (a 

country with high death rates) in Connecticut – Hartford County. 

 

When the screen transitions, Bob observes from the line chart showing the death rate over time in the “County Information” 

panel that this county exceeded the US average death rate very early in 2020 and quite rapidly so, but then remained nearly flat 

starting April. Apparently this county responded well and took good precautions to stem the spread.  

Bob looks at the “Pattern Information” panel to examine the risk factors of the most dominant pattern Hartford, CT participates 

in. The “Risk Pattern Browser” indicates that this is the 3rd most dominant pattern in the database. It is a 2-feature pattern that 

indicates that in Hartford, CT the percentage of non-Hispanics/Whites is at the low end of the US overall range and the ratio of 

median household debt/income is on the high end of the US overall range. Looking at the “Top 3 Risk Factors” of Hartford in the 

“County Information Panel” Bob learns that these two risk factors are actually the top 3 for Hartford in addition to PM25 particle 
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matter pollution and all its values compare unfavorably to the US average, and while they are not at the extreme ends for the 

State of Connecticut they tend to be in the unfavorable value ranges.     

Next Bob clicks on an equally dark colored county in Southern Texas, Cameron County, TX and the screen transitions to what 

is shown below.  

 

Bob observes that for that county the death rate started to climb much later, in July 2020, and that it is still climbing now in 

December, albeit at a shallower slope. While Cameron TX shares the 3rd risk pattern with Hartford CT, it has many more risk 

patterns than Hartford CT, as can be seen by the many filled squares in the “Risk Pattern Browser”. It means that its conditions 

for high death rates are more urgent than for Hartford CT. In fact, its top 3 risk factors are not those of the 3rd risk pattern. For all 

of these Cameron TX fares unfavorably both within the value range found in Texas and with respect to the US average.   

Next, Bob clicks on the first risk pattern in the “Risk Pattern Browser” and sees the screen below.  

 

This pattern is a 3-feature pattern with high and unfavorable value ranges in all three of these features. Only the feature “% 

minority population” appears in the top 3 list for Cameron County, TX and upon further investigation Bob finds that the other 

two risk features, “% population without high school degree” and “% uninsured”, are in risk pattern #4 (see picture next page).  

 



3 

 

 

Bob now wants to investigate whether Cameron County, TX could have learned its fate from other counties with similar risk 

factors but which had experienced high COVID-19 death rates earlier. He looks for counties that share some or all of its top 3 

risk features. So he examines counties with risk pattern #1 and risk pattern #4.  

He starts with risk pattern #1, clicks a few a counties on the map and eventually learns about Passaic County, NJ.  

 

From the timeline he sees that Passaic County, NJ started its death rate at the earliest time and has a similar “% minority 

population”. But this is only one out of the three top 3 risk factors of Cameron County, TX so Bob needs to search more to 

complete the case. He turns to risk pattern #4 and after some search finds McKinley, NM (see next page).    
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McKinley, NM started its death rate climb later than Passaic, NJ but still 4 months earlier than Cameron, TX. Its top 3 risk 

factors contain the two other risk factors of Cameron County, TX. So had Cameron County, TX looked at the fate of McKinley 

County, NM and Passaic County, NJ it could have learned from them and adopt the precautionary measures they took.   

There are many more case studies like this one, where late risers could have learnt from early risers about their fate and prepared 

better. As seen from the early risers’ timelines, all of them were able to get the spread under control. Late risers could have taken 

similar measures and potentially save lives.  

As a conclusion, our results show that pattern analysis is a powerful tool for public health risk management and that a dashboard 

like our Risk Explorer makes it easy to recognize risks and see how outbreaks and disaster in some communities can quickly 

inform other communities that fit a similar vulnerability pattern to prevent further loss.    
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